8,486 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    When the path is never shortest: a reality check on shortest path biocomputation

    Full text link
    Shortest path problems are a touchstone for evaluating the computing performance and functional range of novel computing substrates. Much has been published in recent years regarding the use of biocomputers to solve minimal path problems such as route optimisation and labyrinth navigation, but their outputs are typically difficult to reproduce and somewhat abstract in nature, suggesting that both experimental design and analysis in the field require standardising. This chapter details laboratory experimental data which probe the path finding process in two single-celled protistic model organisms, Physarum polycephalum and Paramecium caudatum, comprising a shortest path problem and labyrinth navigation, respectively. The results presented illustrate several of the key difficulties that are encountered in categorising biological behaviours in the language of computing, including biological variability, non-halting operations and adverse reactions to experimental stimuli. It is concluded that neither organism examined are able to efficiently or reproducibly solve shortest path problems in the specific experimental conditions that were tested. Data presented are contextualised with biological theory and design principles for maximising the usefulness of experimental biocomputer prototypes.Comment: To appear in: Adamatzky, A (Ed.) Shortest path solvers. From software to wetware. Springer, 201

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible

    Biomimetic Engineering

    Get PDF
    Humankind is a privileged animal species for many reasons. A remarkable one is its ability to conceive and manufacture objects. Human industry is indeed leading the various winning strategies (along with language and culture) that has permitted this primate to extraordinarily increase its life expectancy and proliferation rate. (It is indeed so successful, that it now threatens the whole planet.) The design of this industry kicks off in the brain, a computing machine particularly good at storing, recognizing and associating patterns. Even in a time when human beings tend to populate non-natural, man-made environments, the many forms, colorings, textures and behaviors of nature continuously excite our senses and blend in our thoughts, even more deeply during childhood. Then, it would be exaggerated to say that Biomimetics is a brand new strategy. As long as human creation is based on previously acquired knowledge and experiences, it is not surprising that engineering, the arts, and any form of expression, is influenced by nature’s way to some extent. The design of human industry has evolved from very simple tools, to complex engineering devices. Nature has always provided us with a rich catalog of excellent materials and inspiring designs. Now, equipped with new machinery and techniques, we look again at Nature. We aim at mimicking not only its best products, but also its design principles. Organic life, as we know it, is indeed a vast pool of diversity. Living matter inhabits almost every corner of the terrestrial ecosphere. From warm open-air ecosystems to the extreme conditions of hot salt ponds, living cells have found ways to metabolize the sources of energy, and get organized in complex organisms of specialized tissues and organs that adapt themselves to the environment, and can modify the environment to their own needs as well. Life on Earth has evolved such a diverse portfolio of species that the number of designs, mechanisms and strategies that can actually be abstracted is astonishing. As August Krogh put it: "For a large number of problems there will be some animal of choice, on which it can be most conveniently studied". The scientific method starts with a meticulous observation of natural phenomena, and humans are particularly good at that game. In principle, the aim of science is to understand the physical world, but an observer’s mind can behave either as an engineer or as a scientist. The minute examination of the many living forms that surround us has led to the understanding of new organizational principles, some of which can be imported in our production processes. In practice, bio-inspiration can arise at very different levels of observation: be it social organization, the shape of an organism, the structure and functioning of organs, tissular composition, cellular form and behavior, or the detailed structure of molecules. Our direct experience of the wide portfolio of species found in nature, and their particular organs, have clearly favored that the initial models would come from the organism and organ levels. But the development of new techniques (on one hand to observe the micro- and nanostructure of living beings, and on the other to simulate the complex behavior of social communities) have significantly extended the domain of interest

    Review of Anaerobic Digestion Modeling and Optimization Using Nature-Inspired Techniques

    Get PDF
    Although it is a well-researched topic, the complexity, time for process stabilization, and economic factors related to anaerobic digestion call for simulation of the process offline with the help of computer models. Nature-inspired techniques are a recently developed branch of artificial intelligence wherein knowledge is transferred from natural systems to engineered systems. For soft computing applications, nature-inspired techniques have several advantages, including scope for parallel computing, dynamic behavior, and self-organization. This paper presents a comprehensive review of such techniques and their application in anaerobic digestion modeling. We compiled and synthetized the literature on the applications of nature-inspired techniques applied to anaerobic digestion. These techniques provide a balance between diversity and speed of arrival at the optimal solution, which has stimulated their use in anaerobic digestion modeling

    A Survey on Natural Inspired Computing (NIC): Algorithms and Challenges

    Get PDF
    Nature employs interactive images to incorporate end users2019; awareness and implication aptitude form inspirations into statistical/algorithmic information investigation procedures. Nature-inspired Computing (NIC) is an energetic research exploration field that has appliances in various areas, like as optimization, computational intelligence, evolutionary computation, multi-objective optimization, data mining, resource management, robotics, transportation and vehicle routing. The promising playing field of NIC focal point on managing substantial, assorted and self-motivated dimensions of information all the way through the incorporation of individual opinion by means of inspiration as well as communication methods in the study practices. In addition, it is the permutation of correlated study parts together with Bio-inspired computing, Artificial Intelligence and Machine learning that revolves efficient diagnostics interested in a competent pasture of study. This article intend at given that a summary of Nature-inspired Computing, its capacity and concepts and particulars the most significant scientific study algorithms in the field

    Why bad ideas are a good idea

    Get PDF
    What would happen if we wrote an Abstract that was the exact opposite of what the paper described? This is a bad idea, but it makes us think more carefully than usual about properties of Abstracts. This paper describes BadIdeas, a collection of techniques that uses ???bad??? or ???silly??? ideas to inspire creativity, explore design domains and teach critical thinking in interaction design. We describe the approach, some evidence, how it is performed in practice and experience in its use.published or submitted for publicationis peer reviewe
    corecore