181 research outputs found

    APLICACIÓN DEL ALGORITMO DE COLONIA DE HORMIGAS AL PROBLEMA DEL AGENTE VIAJERO

    Get PDF
    ACO (algoritmo de colonia de hormigas) es una metaheurística inspirada en el comportamiento de las colonias de hormigas para solucionar problemas de optimización combinatoria, por medio de la utilización de agentes computacionales simples que trabajan de manera cooperativa y se comunican mediante rastros de feromonas artificiales. En este trabajo se presenta un modelo para resolver el Problema clásico de optimización 'Problema del Agente viajero' (TSP Travelling Salesman Problem)

    Combinatorial Ant Optimization and the Flowshop Problem

    Full text link
    Researchers have developed efficient techniques, meta-heuristics to solve many Combinatorial Optimization (CO) problems, e.g., Flow shop Scheduling Problem, Travelling Salesman Problem (TSP) since the early 60s of the last century. Ant Colony Optimization (ACO) and its variants were introduced by Dorigo et al. [DBS06] in the early 1990s which is a technique to solve CO problems. In this thesis, we used the ACO technique to find solutions to the classic Flow shop Scheduling Problem and proposed a novel method for solution improvement. Our solution is composed of two phases; in the first phase, we solved TSP using ACO technique which gave us an initial permutation or tour. We used the same trip as an initial solution for our problem and then improved it by using 2-opt exchanges which yielded in a promising result. Furthermore, we introduced another improvement technique which gave us a more promising result. We have compared our results with the best (optimal) and worst solution known till date. A comprehensive experimental study using existing dataset proves that our approach remarkably gives good results

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance

    A survey on metaheuristics for stochastic combinatorial optimization

    Get PDF
    Metaheuristics are general algorithmic frameworks, often nature-inspired, designed to solve complex optimization problems, and they are a growing research area since a few decades. In recent years, metaheuristics are emerging as successful alternatives to more classical approaches also for solving optimization problems that include in their mathematical formulation uncertain, stochastic, and dynamic information. In this paper metaheuristics such as Ant Colony Optimization, Evolutionary Computation, Simulated Annealing, Tabu Search and others are introduced, and their applications to the class of Stochastic Combinatorial Optimization Problems (SCOPs) is thoroughly reviewed. Issues common to all metaheuristics, open problems, and possible directions of research are proposed and discussed. In this survey, the reader familiar to metaheuristics finds also pointers to classical algorithmic approaches to optimization under uncertainty, and useful informations to start working on this problem domain, while the reader new to metaheuristics should find a good tutorial in those metaheuristics that are currently being applied to optimization under uncertainty, and motivations for interest in this fiel

    Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Get PDF
    Currently, wireless sensor networks (WSNs) are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC) algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO) is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO) and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP) hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i) selection of optimal number of subregions and further subregion parts, (ii) cluster head selection using ABC algorithm, and (iii) efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS). The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively

    Ant colony optimization

    Get PDF
    En los últimos años, la comunidad científica ha realizado una gran cantidad de propuestas de nuevas metaheurísticas que prometían resolver un amplio espectro de problemas de optimización del tipo NP. Sin embargo, en la práctica solamente un grupo pequeño de esas propuestas han logrado consolidarse, demostrando una amplia aplicabilidad sobre problemas de muy diversas características y adquiriendo la madurez necesaria como técnica de optimización para ser una alternativa real al momento de resolver un problema de optimización. Ant Colony Optimization (ACO) es una metaheurística sobre la que se ha trabajado ampliamente en los últimos 15 años. Se ha aplicado con éxito sobre varios de los problemas estándares de optimización demostrando su potencial. El presente reporte es un relevamiento de las diversas variantes de ACO que han sido propuestas en estos 15 años. El eje central de este relevamiento es el estudio de las propuestas existentes para problemas estáticos de optimación combinatoria

    Population-based algorithms for improved history matching and uncertainty quantification of Petroleum reservoirs

    Get PDF
    In modern field management practices, there are two important steps that shed light on a multimillion dollar investment. The first step is history matching where the simulation model is calibrated to reproduce the historical observations from the field. In this inverse problem, different geological and petrophysical properties may provide equally good history matches. Such diverse models are likely to show different production behaviors in future. This ties the history matching with the second step, uncertainty quantification of predictions. Multiple history matched models are essential for a realistic uncertainty estimate of the future field behavior. These two steps facilitate decision making and have a direct impact on technical and financial performance of oil and gas companies. Population-based optimization algorithms have been recently enjoyed growing popularity for solving engineering problems. Population-based systems work with a group of individuals that cooperate and communicate to accomplish a task that is normally beyond the capabilities of each individual. These individuals are deployed with the aim to solve the problem with maximum efficiency. This thesis introduces the application of two novel population-based algorithms for history matching and uncertainty quantification of petroleum reservoir models. Ant colony optimization and differential evolution algorithms are used to search the space of parameters to find multiple history matched models and, using a Bayesian framework, the posterior probability of the models are evaluated for prediction of reservoir performance. It is demonstrated that by bringing latest developments in computer science such as ant colony, differential evolution and multiobjective optimization, we can improve the history matching and uncertainty quantification frameworks. This thesis provides insights into performance of these algorithms in history matching and prediction and develops an understanding of their tuning parameters. The research also brings a comparative study of these methods with a benchmark technique called Neighbourhood Algorithms. This comparison reveals the superiority of the proposed methodologies in various areas such as computational efficiency and match quality

    Muurahaisyhdyskuntaoptimointi

    Get PDF
    Siirretty Doriast
    corecore