1,231 research outputs found

    DeepACO: Neural-enhanced Ant Systems for Combinatorial Optimization

    Full text link
    Ant Colony Optimization (ACO) is a meta-heuristic algorithm that has been successfully applied to various Combinatorial Optimization Problems (COPs). Traditionally, customizing ACO for a specific problem requires the expert design of knowledge-driven heuristics. In this paper, we propose DeepACO, a generic framework that leverages deep reinforcement learning to automate heuristic designs. DeepACO serves to strengthen the heuristic measures of existing ACO algorithms and dispense with laborious manual design in future ACO applications. As a neural-enhanced meta-heuristic, DeepACO consistently outperforms its ACO counterparts on eight COPs using a single neural model and a single set of hyperparameters. As a Neural Combinatorial Optimization method, DeepACO performs better than or on par with problem-specific methods on canonical routing problems. Our code is publicly available at https://github.com/henry-yeh/DeepACO.Comment: Accepted at NeurIPS 202

    The evolution of cell formation problem methodologies based on recent studies (1997-2008): review and directions for future research

    Get PDF
    This paper presents a literature review of the cell formation (CF) problem concentrating on formulations proposed in the last decade. It refers to a number of solution approaches that have been employed for CF such as mathematical programming, heuristic and metaheuristic methodologies and artificial intelligence strategies. A comparison and evaluation of all methodologies is attempted and some shortcomings are highlighted. Finally, suggestions for future research are proposed useful for CF researchers

    A mathematical model and artificial bee colony algorithm for the lexicographic bottleneck mixed-model assembly line balancing problem

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Typically, the total number of required workstations are minimised for a given cycle time (this problem is referred to as type-1), or cycle time is minimised for a given number of workstations (this problem is referred to as type-2) in traditional balancing of assembly lines. However, variation in workload distributions of workstations is an important indicator of the quality of the obtained line balance. This needs to be taken into account to improve the reliability of an assembly line against unforeseeable circumstances, such as breakdowns or other failures. For this aim, a new problem, called lexicographic bottleneck mixed-model assembly line balancing problem (LB-MALBP), is presented and formalised. The lexicographic bottleneck objective, which was recently proposed for the simple single-model assembly line system in the literature, is considered for a mixed-model assembly line system. The mathematical model of the LB-MALBP is developed for the first time in the literature and coded in GAMS solver, and optimal solutions are presented for some small scale test problems available in the literature. As it is not possible to get optimal solutions for the large-scale instances, an artificial bee colony algorithm is also implemented for the solution of the LB-MALBP. The solution procedures of the algorithm are explored illustratively. The performance of the algorithm is also assessed using derived well-known test problems in this domain and promising results are observed in reasonable CPU times

    Water filtration by using apple and banana peels as activated carbon

    Get PDF
    Water filter is an important devices for reducing the contaminants in raw water. Activated from charcoal is used to absorb the contaminants. Fruit peels are some of the suitable alternative carbon to substitute the charcoal. Determining the role of fruit peels which were apple and banana peels powder as activated carbon in water filter is the main goal. Drying and blending the peels till they become powder is the way to allow them to absorb the contaminants. Comparing the results for raw water before and after filtering is the observation. After filtering the raw water, the reading for pH was 6.8 which is in normal pH and turbidity reading recorded was 658 NTU. As for the colour, the water becomes more clear compared to the raw water. This study has found that fruit peels such as banana and apple are an effective substitute to charcoal as natural absorbent

    Facility Layout

    Get PDF

    Use of bio-inspired techniques to solve complex engineering problems: industrial automation case study

    Get PDF
    Nowadays local markets have disappeared and the world lives in a global economy. Due to this reality, every company virtually competes with all others companies in the world. In addition to this, markets constantly search products with higher quality at lower costs, with high customization. Also, products tend to have a shorter period of life, making the demanding more intense. With this scenario, companies, to remain competitive, must constantly adapt themselves to the market changes, i.e., companies must exhibit a great degree of self-organization and self-adaptation. Biology with the millions of years of evolution may offer inspiration to develop new algorithms, methods and techniques to solve real complex problems. As an example, the behaviour of ants and bees, have inspired researchers in the pursuit of solutions to solve complex and evolvable engineering problems. This dissertation has the goal of explore the world of bio-inspired engineering. This is done by studying some of the bio-inspired solutions and searching for bio-inspired solutions to solve the daily problems. A more deep focus will be made to the engineering problems and particularly to the manufacturing domain. Multi-agent systems is a concept aligned with the bio-inspired principles offering a new approach to develop solutions that exhibit robustness, flexibility, responsiveness and re-configurability. In such distributed bio-inspired systems, the behaviour of each entity follows simple few rules, but the overall emergent behaviour is very complex to understand and to demonstrate. Therefore, the design and simulation of distributed agent-based solutions, and particularly those exhibiting self-organizing, are usually a hard task. Agent Based Modelling (ABM) tools simplifies this task by providing an environment for programming, modelling and simulating agent-based solutions, aiming to test and compare alternative model configurations. A deeply analysis of the existing ABM tools was also performed aiming to select the platform to be used in this work. Aiming to demonstrate the benefits of bio-inspired techniques for the industrial automation domain, a production system was used as case study for the development of a self-organizing agent-based system developed using the NetLogo tool. Hoje em dia os mercados locais desapareceram e o mundo vive numa economia global. Devido a esta realidade, cada companhia compete, virtualmente, com todas as outras companhias do mundo. A acrescentar a isto, os mercados estão constantemente à procura de produtos com maior qualidade a preços mais baixos e com um grande nível de customização Também, os produtos tendem a ter um tempo curto de vida, fazendo com que a procura seja mais intensa. Com este cenário, as companhias, para permanecer competitivas, têm que se adaptar constantemente de acordo com as mudanças de mercado, i.e., as companhias têm que exibir um alto grau de auto-organização e auto-adaptação. A biologia com os milhões de anos de evolução, pode oferecer inspiração para desenvolver novos algoritmos, métodos e técnicas para resolver problemas complexos reais. Como por exemplo, o comportamento das formigas e das abelhas inspiraram investigadores na descoberta de soluções para resolver problemas complexos e evolutivos de engenharia. Esta dissertação tem como objectivo explorar o mundo da engenharia bio-inspirada. Isto é feito através do estudo de algumas das soluções bio-inspiradas existentes e da procura de soluções bio-inspiradas para resolver os problemas do dia-a-dia. Uma atenção especial vai ser dada aos problemas de engenharia e particularmente aos problemas do domínio da manufactura. Os sistemas multi-agentes são um conceito que estão em linha com os princípios bio-inspirados oferecendo uma abordagem nova para desenvolver soluções que exibam robustez, flexibilidade, rapidez de resposta e reconfiguração. Nestes sistemas distribuídos bio-inspirados, o comportamento de cada entidade segue um pequeno conjunto de regras simples, mas o comportamento emergente global é muito complexo de perceber e de demonstrar. Por isso, o desenho e simulação de soluções distribuídas de agentes, e particularmente aqueles que exibem auto-organização, são normalmente uma tarefa árdua. As ferramentas de Modelação Baseada de Agentes (MBA) simplificam esta tarefa providenciando um ambiente para programar, modelar e simular, com o objectivo de testar e comparar diferentes configurações do modelo. Uma análise mais aprofundada das ferramentas MBA foi também efectuada tendo como objectivo seleccionar a plataforma a usar neste trabalho

    Ant Colony Optimization

    Get PDF
    Ant Colony Optimization (ACO) is the best example of how studies aimed at understanding and modeling the behavior of ants and other social insects can provide inspiration for the development of computational algorithms for the solution of difficult mathematical problems. Introduced by Marco Dorigo in his PhD thesis (1992) and initially applied to the travelling salesman problem, the ACO field has experienced a tremendous growth, standing today as an important nature-inspired stochastic metaheuristic for hard optimization problems. This book presents state-of-the-art ACO methods and is divided into two parts: (I) Techniques, which includes parallel implementations, and (II) Applications, where recent contributions of ACO to diverse fields, such as traffic congestion and control, structural optimization, manufacturing, and genomics are presented

    Assembly Line Balancing using Artificial Neural Network: A Case Study of Tricycle Assembly Line

    Get PDF
    This study reports the use of Artificial Neural Network in balancing an existing single-model assembly line of Boulous Enterprises Limited. A multilayer perceptron, with the help of online training was utilized, due to its ability to accommodate large dataset. The results obtained showed that standard cycle time of 576 seconds in the existing line was reduced to 526 seconds. Also, the average idle time was reduced from 105 seconds to 56 seconds, and the output of tricycles produced per day was increased from 50 to 55. The results clearly showed that a better balanced line was obtained with the use of Artificial Neural Network. Keywords: Line Balancing, bottlenecks, Idle Time, Efficienc
    corecore