99 research outputs found

    Answering SPARQL queries modulo RDF Schema with paths

    Get PDF
    SPARQL is the standard query language for RDF graphs. In its strict instantiation, it only offers querying according to the RDF semantics and would thus ignore the semantics of data expressed with respect to (RDF) schemas or (OWL) ontologies. Several extensions to SPARQL have been proposed to query RDF data modulo RDFS, i.e., interpreting the query with RDFS semantics and/or considering external ontologies. We introduce a general framework which allows for expressing query answering modulo a particular semantics in an homogeneous way. In this paper, we discuss extensions of SPARQL that use regular expressions to navigate RDF graphs and may be used to answer queries considering RDFS semantics. We also consider their embedding as extensions of SPARQL. These SPARQL extensions are interpreted within the proposed framework and their drawbacks are presented. In particular, we show that the PSPARQL query language, a strict extension of SPARQL offering transitive closure, allows for answering SPARQL queries modulo RDFS graphs with the same complexity as SPARQL through a simple transformation of the queries. We also consider languages which, in addition to paths, provide constraints. In particular, we present and compare nSPARQL and our proposal CPSPARQL. We show that CPSPARQL is expressive enough to answer full SPARQL queries modulo RDFS. Finally, we compare the expressiveness and complexity of both nSPARQL and the corresponding fragment of CPSPARQL, that we call cpSPARQL. We show that both languages have the same complexity through cpSPARQL, being a proper extension of SPARQL graph patterns, is more expressive than nSPARQL.Comment: RR-8394; alkhateeb2003

    Constrained regular expressions for answering RDF-path queries modulo RDFS

    Get PDF
    alkhateeb2014aInternational audienceThe standard SPARQL query language is currently defined for querying RDF graphs without RDFS semantics. Several extensions of SPARQL to RDFS semantics have been proposed. In this paper, we discuss extensions of SPARQL that use regular expressions to navigate RDF graphs and may be used to answer queries considering RDFS semantics. In particular, we present and compare nSPARQL and our proposal CPSPARQL. We show that CPSPARQL is expressive enough to answer full SPARQL queries modulo RDFS. Finally, we compare the expressiveness and complexity of both nSPARQL and the corresponding frag- ment of CPSPARQL, that we call cpSPARQL. We show that both languages have the same complexity through cpSPARQL, being a proper extension of SPARQL graph patterns, is more expressive than nSPARQL

    Four Lessons in Versatility or How Query Languages Adapt to the Web

    Get PDF
    Exposing not only human-centered information, but machine-processable data on the Web is one of the commonalities of recent Web trends. It has enabled a new kind of applications and businesses where the data is used in ways not foreseen by the data providers. Yet this exposition has fractured the Web into islands of data, each in different Web formats: Some providers choose XML, others RDF, again others JSON or OWL, for their data, even in similar domains. This fracturing stifles innovation as application builders have to cope not only with one Web stack (e.g., XML technology) but with several ones, each of considerable complexity. With Xcerpt we have developed a rule- and pattern based query language that aims to give shield application builders from much of this complexity: In a single query language XML and RDF data can be accessed, processed, combined, and re-published. Though the need for combined access to XML and RDF data has been recognized in previous work (including the W3C’s GRDDL), our approach differs in four main aspects: (1) We provide a single language (rather than two separate or embedded languages), thus minimizing the conceptual overhead of dealing with disparate data formats. (2) Both the declarative (logic-based) and the operational semantics are unified in that they apply for querying XML and RDF in the same way. (3) We show that the resulting query language can be implemented reusing traditional database technology, if desirable. Nevertheless, we also give a unified evaluation approach based on interval labelings of graphs that is at least as fast as existing approaches for tree-shaped XML data, yet provides linear time and space querying also for many RDF graphs. We believe that Web query languages are the right tool for declarative data access in Web applications and that Xcerpt is a significant step towards a more convenient, yet highly efficient data access in a “Web of Data”

    Making Linked Open Data Writable with Provenance Semirings

    Get PDF
    Linked Open Data cloud (LOD) is essentially read-only, re- straining the possibility of collaborative knowledge construction. To sup- port collaboration, we need to make the LOD writable. In this paper, we propose a vision for a writable linked data where each LOD participant can define updatable materialized views from data hosted by other par- ticipants. Consequently, building a writable LOD can be reduced to the problem of SPARQL self-maintenance of Select-Union recursive mate- rialized views. We propose TM-Graph, an RDF-Graph annotated with elements of a specialized provenance semiring to maintain consistency of these views and we analyze complexity in space and traffic

    Beyond Well-designed SPARQL

    Get PDF
    SPARQL is the standard query language for RDF data. The distinctive feature of SPARQL is the OPTIONAL operator, which allows for partial answers when complete answers are not available due to lack of information. However, optional matching is computationally expensive - query answering is PSPACE-complete. The well-designed fragment of SPARQL achieves much better computational properties by restricting the use of optional matching - query answering becomes coNP-complete. However, well-designed SPARQL captures far from all real-life queries - in fact, only about half of the queries over DBpedia that use OPTIONAL are well-designed. In the present paper, we study queries outside of well-designed SPARQL. We introduce the class of weakly well-designed queries that subsumes well-designed queries and includes most common meaningful non-well-designed queries: our analysis shows that the new fragment captures about 99% of DBpedia queries with OPTIONAL. At the same time, query answering for weakly well-designed SPARQL remains coNP-complete, and our fragment is in a certain sense maximal for this complexity. We show that the fragment\u27s expressive power is strictly in-between well-designed and full SPARQL. Finally, we provide an intuitive normal form for weakly well-designed queries and study the complexity of containment and equivalence

    Doctor of Philosophy

    Get PDF
    dissertationLinked data are the de-facto standard in publishing and sharing data on the web. To date, we have been inundated with large amounts of ever-increasing linked data in constantly evolving structures. The proliferation of the data and the need to access and harvest knowledge from distributed data sources motivate us to revisit several classic problems in query processing and query optimization. The problem of answering queries over views is commonly encountered in a number of settings, including while enforcing security policies to access linked data, or when integrating data from disparate sources. We approach this problem by efficiently rewriting queries over the views to equivalent queries over the underlying linked data, thus avoiding the costs entailed by view materialization and maintenance. An outstanding problem of query rewriting is the number of rewritten queries is exponential to the size of the query and the views, which motivates us to study problem of multiquery optimization in the context of linked data. Our solutions are declarative and make no assumption for the underlying storage, i.e., being store-independent. Unlike relational and XML data, linked data are schema-less. While tracking the evolution of schema for linked data is hard, keyword search is an ideal tool to perform data integration. Existing works make crippling assumptions for the data and hence fall short in handling massive linked data with tens to hundreds of millions of facts. Our study for keyword search on linked data brought together the classical techniques in the literature and our novel ideas, which leads to much better query efficiency and quality of the results. Linked data also contain rich temporal semantics. To cope with the ever-increasing data, we have investigated how to partition and store large temporal or multiversion linked data for distributed and parallel computation, in an effort to achieve load-balancing to support scalable data analytics for massive linked data

    SPARQL Query Rewriting with Paths [Master's Thesis]

    Get PDF
    International audienceThe Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries. It involves publishing in languages specifically designed for data like (RDF) Resource Description Framework. In order to access the published data, it offers a query language named SPARQL.The goal of this study is to transform SPARQL queries to other SPARQL queries which can be executed more efficiently. Our main goal of transformation is to eliminate non-distinguished variables, which are source of extra complexity, where such elimination is possible. We rewrite SPARQL queries with property paths, which was introduced in SPARQL 1.1
    corecore