258 research outputs found

    Advancing Multi-Modal Deep Learning: Towards Language-Grounded Visual Understanding

    Get PDF
    Using deep learning, computer vision now rivals people at object recognition and detection, opening doors to tackle new challenges in image understanding. Among these challenges, understanding and reasoning about language grounded visual content is of fundamental importance to advancing artificial intelligence. Recently, multiple datasets and algorithms have been created as proxy tasks towards this goal, with visual question answering (VQA) being the most widely studied. In VQA, an algorithm needs to produce an answer to a natural language question about an image. However, our survey of datasets and algorithms for VQA uncovered several sources of dataset bias and sub-optimal evaluation metrics that allowed algorithms to perform well by merely exploiting superficial statistical patterns. In this dissertation, we describe new algorithms and datasets that address these issues. We developed two new datasets and evaluation metrics that enable a more accurate measurement of abilities of a VQA model, and also expand VQA to include new abilities, such as reading text, handling out-of-vocabulary words, and understanding data-visualization. We also created new algorithms for VQA that have helped advance the state-of-the-art for VQA, including an algorithm that surpasses humans on two different chart question answering datasets about bar-charts, line-graphs and pie charts. Finally, we provide a holistic overview of several yet-unsolved challenges in not only VQA but vision and language research at large. Despite enormous progress, we find that a robust understanding and integration of vision and language is still an elusive goal, and much of the progress may be misleading due to dataset bias, superficial correlations and flaws in standard evaluation metrics. We carefully study and categorize these issues for several vision and language tasks and outline several possible paths towards development of safe, robust and trustworthy AI for language-grounded visual understanding

    Multimodal Explainable Artificial Intelligence: A Comprehensive Review of Methodological Advances and Future Research Directions

    Full text link
    The current study focuses on systematically analyzing the recent advances in the field of Multimodal eXplainable Artificial Intelligence (MXAI). In particular, the relevant primary prediction tasks and publicly available datasets are initially described. Subsequently, a structured presentation of the MXAI methods of the literature is provided, taking into account the following criteria: a) The number of the involved modalities, b) The stage at which explanations are produced, and c) The type of the adopted methodology (i.e. mathematical formalism). Then, the metrics used for MXAI evaluation are discussed. Finally, a comprehensive analysis of current challenges and future research directions is provided.Comment: 26 pages, 11 figure

    ChartReader: A Unified Framework for Chart Derendering and Comprehension without Heuristic Rules

    Full text link
    Charts are a powerful tool for visually conveying complex data, but their comprehension poses a challenge due to the diverse chart types and intricate components. Existing chart comprehension methods suffer from either heuristic rules or an over-reliance on OCR systems, resulting in suboptimal performance. To address these issues, we present ChartReader, a unified framework that seamlessly integrates chart derendering and comprehension tasks. Our approach includes a transformer-based chart component detection module and an extended pre-trained vision-language model for chart-to-X tasks. By learning the rules of charts automatically from annotated datasets, our approach eliminates the need for manual rule-making, reducing effort and enhancing accuracy.~We also introduce a data variable replacement technique and extend the input and position embeddings of the pre-trained model for cross-task training. We evaluate ChartReader on Chart-to-Table, ChartQA, and Chart-to-Text tasks, demonstrating its superiority over existing methods. Our proposed framework can significantly reduce the manual effort involved in chart analysis, providing a step towards a universal chart understanding model. Moreover, our approach offers opportunities for plug-and-play integration with mainstream LLMs such as T5 and TaPas, extending their capability to chart comprehension tasks. The code is available at https://github.com/zhiqic/ChartReader

    Enhanced Chart Understanding in Vision and Language Task via Cross-modal Pre-training on Plot Table Pairs

    Full text link
    Building cross-model intelligence that can understand charts and communicate the salient information hidden behind them is an appealing challenge in the vision and language(V+L) community. The capability to uncover the underlined table data of chart figures is a critical key to automatic chart understanding. We introduce ChartT5, a V+L model that learns how to interpret table information from chart images via cross-modal pre-training on plot table pairs. Specifically, we propose two novel pre-training objectives: Masked Header Prediction (MHP) and Masked Value Prediction (MVP) to facilitate the model with different skills to interpret the table information. We have conducted extensive experiments on chart question answering and chart summarization to verify the effectiveness of the proposed pre-training strategies. In particular, on the ChartQA benchmark, our ChartT5 outperforms the state-of-the-art non-pretraining methods by over 8% performance gains.Comment: Accepted by Findings of ACL 202

    DCQA: Document-Level Chart Question Answering towards Complex Reasoning and Common-Sense Understanding

    Full text link
    Visually-situated languages such as charts and plots are omnipresent in real-world documents. These graphical depictions are human-readable and are often analyzed in visually-rich documents to address a variety of questions that necessitate complex reasoning and common-sense responses. Despite the growing number of datasets that aim to answer questions over charts, most only address this task in isolation, without considering the broader context of document-level question answering. Moreover, such datasets lack adequate common-sense reasoning information in their questions. In this work, we introduce a novel task named document-level chart question answering (DCQA). The goal of this task is to conduct document-level question answering, extracting charts or plots in the document via document layout analysis (DLA) first and subsequently performing chart question answering (CQA). The newly developed benchmark dataset comprises 50,010 synthetic documents integrating charts in a wide range of styles (6 styles in contrast to 3 for PlotQA and ChartQA) and includes 699,051 questions that demand a high degree of reasoning ability and common-sense understanding. Besides, we present the development of a potent question-answer generation engine that employs table data, a rich color set, and basic question templates to produce a vast array of reasoning question-answer pairs automatically. Based on DCQA, we devise an OCR-free transformer for document-level chart-oriented understanding, capable of DLA and answering complex reasoning and common-sense questions over charts in an OCR-free manner. Our DCQA dataset is expected to foster research on understanding visualizations in documents, especially for scenarios that require complex reasoning for charts in the visually-rich document. We implement and evaluate a set of baselines, and our proposed method achieves comparable results

    A Survey on ML4VIS: Applying Machine Learning Advances to Data Visualization

    Full text link
    Inspired by the great success of machine learning (ML), researchers have applied ML techniques to visualizations to achieve a better design, development, and evaluation of visualizations. This branch of studies, known as ML4VIS, is gaining increasing research attention in recent years. To successfully adapt ML techniques for visualizations, a structured understanding of the integration of ML4VISis needed. In this paper, we systematically survey 88 ML4VIS studies, aiming to answer two motivating questions: "what visualization processes can be assisted by ML?" and "how ML techniques can be used to solve visualization problems?" This survey reveals seven main processes where the employment of ML techniques can benefit visualizations:Data Processing4VIS, Data-VIS Mapping, InsightCommunication, Style Imitation, VIS Interaction, VIS Reading, and User Profiling. The seven processes are related to existing visualization theoretical models in an ML4VIS pipeline, aiming to illuminate the role of ML-assisted visualization in general visualizations.Meanwhile, the seven processes are mapped into main learning tasks in ML to align the capabilities of ML with the needs in visualization. Current practices and future opportunities of ML4VIS are discussed in the context of the ML4VIS pipeline and the ML-VIS mapping. While more studies are still needed in the area of ML4VIS, we hope this paper can provide a stepping-stone for future exploration. A web-based interactive browser of this survey is available at https://ml4vis.github.ioComment: 19 pages, 12 figures, 4 table
    • …
    corecore