4,252 research outputs found

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema

    Open issues in semantic query optimization in relational DBMS

    Get PDF
    After two decades of research into Semantic Query Optimization (SQO) there is clear agreement as to the efficacy of SQO. However, although there are some experimental implementations there are still no commercial implementations. We first present a thorough analysis of research into SQO. We identify three problems which inhibit the effective use of SQO in Relational Database Management Systems(RDBMS). We then propose solutions to these problems and describe first steps towards the implementation of an effective semantic query optimizer for relational databases

    Selecting and Generating Computational Meaning Representations for Short Texts

    Full text link
    Language conveys meaning, so natural language processing (NLP) requires representations of meaning. This work addresses two broad questions: (1) What meaning representation should we use? and (2) How can we transform text to our chosen meaning representation? In the first part, we explore different meaning representations (MRs) of short texts, ranging from surface forms to deep-learning-based models. We show the advantages and disadvantages of a variety of MRs for summarization, paraphrase detection, and clustering. In the second part, we use SQL as a running example for an in-depth look at how we can parse text into our chosen MR. We examine the text-to-SQL problem from three perspectives—methodology, systems, and applications—and show how each contributes to a fuller understanding of the task.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143967/1/cfdollak_1.pd

    AQUAGP: Approximate QUery Answering Using Genetic Programming

    Get PDF
    Speed, cost, and accuracy are crucial performance parameters while evaluating the quality of a query using any Database Management System (DBMS). For some queries it may be possible to approximate the answer using an approximate query answering algorithm or tool. Also, for certain queries, it may not be critical to determine the perfect/exact results so long as the following conditions are true: (a) a high percentage of the relevant data is retrieved correctly, (b) irrelevant or extra data is minimized, and (c) an approximate answer (if available) results in a significant savings in terms of the overall query cost and retrieval time. In this paper we describe a novel approach for approximate query answering using the Genetic Programming (GP) paradigms. We develop an evolutionary computing based query space exploration framework. Given an input query and the database schema, our framework uses tree-based GP to automatically generate and evaluate approximate query candidates. We highlight and discuss different avenues we explored. We evaluate the success of our experiments based on the speed, the cost, and the accuracy of the results retrieved by the re-formulated (GP generated) queries and present the results on a variety of query types for TPC-benchmark and PKDD-benchmark datasets

    A semantic and agent-based approach to support information retrieval, interoperability and multi-lateral viewpoints for heterogeneous environmental databases

    Get PDF
    PhDData stored in individual autonomous databases often needs to be combined and interrelated. For example, in the Inland Water (IW) environment monitoring domain, the spatial and temporal variation of measurements of different water quality indicators stored in different databases are of interest. Data from multiple data sources is more complex to combine when there is a lack of metadata in a computation forin and when the syntax and semantics of the stored data models are heterogeneous. The main types of information retrieval (IR) requirements are query transparency and data harmonisation for data interoperability and support for multiple user views. A combined Semantic Web based and Agent based distributed system framework has been developed to support the above IR requirements. It has been implemented using the Jena ontology and JADE agent toolkits. The semantic part supports the interoperability of autonomous data sources by merging their intensional data, using a Global-As-View or GAV approach, into a global semantic model, represented in DAML+OIL and in OWL. This is used to mediate between different local database views. The agent part provides the semantic services to import, align and parse semantic metadata instances, to support data mediation and to reason about data mappings during alignment. The framework has applied to support information retrieval, interoperability and multi-lateral viewpoints for four European environmental agency databases. An extended GAV approach has been developed and applied to handle queries that can be reformulated over multiple user views of the stored data. This allows users to retrieve data in a conceptualisation that is better suited to them rather than to have to understand the entire detailed global view conceptualisation. User viewpoints are derived from the global ontology or existing viewpoints of it. This has the advantage that it reduces the number of potential conceptualisations and their associated mappings to be more computationally manageable. Whereas an ad hoc framework based upon conventional distributed programming language and a rule framework could be used to support user views and adaptation to user views, a more formal framework has the benefit in that it can support reasoning about the consistency, equivalence, containment and conflict resolution when traversing data models. A preliminary formulation of the formal model has been undertaken and is based upon extending a Datalog type algebra with hierarchical, attribute and instance value operators. These operators can be applied to support compositional mapping and consistency checking of data views. The multiple viewpoint system was implemented as a Java-based application consisting of two sub-systems, one for viewpoint adaptation and management, the other for query processing and query result adjustment

    Virtual Knowledge Graphs: An Overview of Systems and Use Cases

    Get PDF
    In this paper, we present the virtual knowledge graph (VKG) paradigm for data integration and access, also known in the literature as Ontology-based Data Access. Instead of structuring the integration layer as a collection of relational tables, the VKG paradigm replaces the rigid structure of tables with the flexibility of graphs that are kept virtual and embed domain knowledge. We explain the main notions of this paradigm, its tooling ecosystem and significant use cases in a wide range of applications. Finally, we discuss future research directions
    • …
    corecore