71,202 research outputs found

    Information fusion for automated question answering

    Get PDF
    Until recently, research efforts in automated Question Answering (QA) have mainly focused on getting a good understanding of questions to retrieve correct answers. This includes deep parsing, lookups in ontologies, question typing and machine learning of answer patterns appropriate to question forms. In contrast, I have focused on the analysis of the relationships between answer candidates as provided in open domain QA on multiple documents. I argue that such candidates have intrinsic properties, partly regardless of the question, and those properties can be exploited to provide better quality and more user-oriented answers in QA.Information fusion refers to the technique of merging pieces of information from different sources. In QA over free text, it is motivated by the frequency with which different answer candidates are found in different locations, leading to a multiplicity of answers. The reason for such multiplicity is, in part, the massive amount of data used for answering, and also its unstructured and heterogeneous content: Besides am¬ biguities in user questions leading to heterogeneity in extractions, systems have to deal with redundancy, granularity and possible contradictory information. Hence the need for answer candidate comparison. While frequency has proved to be a significant char¬ acteristic of a correct answer, I evaluate the value of other relationships characterizing answer variability and redundancy.Partially inspired by recent developments in multi-document summarization, I re¬ define the concept of "answer" within an engineering approach to QA based on the Model-View-Controller (MVC) pattern of user interface design. An "answer model" is a directed graph in which nodes correspond to entities projected from extractions and edges convey relationships between such nodes. The graph represents the fusion of information contained in the set of extractions. Different views of the answer model can be produced, capturing the fact that the same answer can be expressed and pre¬ sented in various ways: picture, video, sound, written or spoken language, or a formal data structure. Within this framework, an answer is a structured object contained in the model and retrieved by a strategy to build a particular view depending on the end user (or taskj's requirements.I describe shallow techniques to compare entities and enrich the model by discovering four broad categories of relationships between entities in the model: equivalence, inclusion, aggregation and alternative. Quantitatively, answer candidate modeling im¬ proves answer extraction accuracy. It also proves to be more robust to incorrect answer candidates than traditional techniques. Qualitatively, models provide meta-information encoded by relationships that allow shallow reasoning to help organize and generate the final output

    How to Evaluate your Question Answering System Every Day and Still Get Real Work Done

    Full text link
    In this paper, we report on Qaviar, an experimental automated evaluation system for question answering applications. The goal of our research was to find an automatically calculated measure that correlates well with human judges' assessment of answer correctness in the context of question answering tasks. Qaviar judges the response by computing recall against the stemmed content words in the human-generated answer key. It counts the answer correct if it exceeds agiven recall threshold. We determined that the answer correctness predicted by Qaviar agreed with the human 93% to 95% of the time. 41 question-answering systems were ranked by both Qaviar and human assessors, and these rankings correlated with a Kendall's Tau measure of 0.920, compared to a correlation of 0.956 between human assessors on the same data.Comment: 6 pages, 3 figures, to appear in Proceedings of the Second International Conference on Language Resources and Evaluation (LREC 2000

    Combining information seeking services into a meta supply chain of facts

    Get PDF
    The World Wide Web has become a vital supplier of information that allows organizations to carry on such tasks as business intelligence, security monitoring, and risk assessments. Having a quick and reliable supply of correct facts from perspective is often mission critical. By following design science guidelines, we have explored ways to recombine facts from multiple sources, each with possibly different levels of responsiveness and accuracy, into one robust supply chain. Inspired by prior research on keyword-based meta-search engines (e.g., metacrawler.com), we have adapted the existing question answering algorithms for the task of analysis and triangulation of facts. We present a first prototype for a meta approach to fact seeking. Our meta engine sends a user's question to several fact seeking services that are publicly available on the Web (e.g., ask.com, brainboost.com, answerbus.com, NSIR, etc.) and analyzes the returned results jointly to identify and present to the user those that are most likely to be factually correct. The results of our evaluation on the standard test sets widely used in prior research support the evidence for the following: 1) the value-added of the meta approach: its performance surpasses the performance of each supplier, 2) the importance of using fact seeking services as suppliers to the meta engine rather than keyword driven search portals, and 3) the resilience of the meta approach: eliminating a single service does not noticeably impact the overall performance. We show that these properties make the meta-approach a more reliable supplier of facts than any of the currently available stand-alone services
    • …
    corecore