1,426,276 research outputs found

    Normal forms for Answer Sets Programming

    Full text link
    Normal forms for logic programs under stable/answer set semantics are introduced. We argue that these forms can simplify the study of program properties, mainly consistency. The first normal form, called the {\em kernel} of the program, is useful for studying existence and number of answer sets. A kernel program is composed of the atoms which are undefined in the Well-founded semantics, which are those that directly affect the existence of answer sets. The body of rules is composed of negative literals only. Thus, the kernel form tends to be significantly more compact than other formulations. Also, it is possible to check consistency of kernel programs in terms of colorings of the Extended Dependency Graph program representation which we previously developed. The second normal form is called {\em 3-kernel.} A 3-kernel program is composed of the atoms which are undefined in the Well-founded semantics. Rules in 3-kernel programs have at most two conditions, and each rule either belongs to a cycle, or defines a connection between cycles. 3-kernel programs may have positive conditions. The 3-kernel normal form is very useful for the static analysis of program consistency, i.e., the syntactic characterization of existence of answer sets. This result can be obtained thanks to a novel graph-like representation of programs, called Cycle Graph which presented in the companion article \cite{Cos04b}.Comment: 15 pages, To appear in Theory and Practice of Logic Programming (TPLP

    Computing Preferred Answer Sets by Meta-Interpretation in Answer Set Programming

    Full text link
    Most recently, Answer Set Programming (ASP) is attracting interest as a new paradigm for problem solving. An important aspect which needs to be supported is the handling of preferences between rules, for which several approaches have been presented. In this paper, we consider the problem of implementing preference handling approaches by means of meta-interpreters in Answer Set Programming. In particular, we consider the preferred answer set approaches by Brewka and Eiter, by Delgrande, Schaub and Tompits, and by Wang, Zhou and Lin. We present suitable meta-interpreters for these semantics using DLV, which is an efficient engine for ASP. Moreover, we also present a meta-interpreter for the weakly preferred answer set approach by Brewka and Eiter, which uses the weak constraint feature of DLV as a tool for expressing and solving an underlying optimization problem. We also consider advanced meta-interpreters, which make use of graph-based characterizations and often allow for more efficient computations. Our approach shows the suitability of ASP in general and of DLV in particular for fast prototyping. This can be fruitfully exploited for experimenting with new languages and knowledge-representation formalisms.Comment: 34 pages, appeared as a Technical Report at KBS of the Vienna University of Technology, see http://www.kr.tuwien.ac.at/research/reports

    Group Sparse CNNs for Question Classification with Answer Sets

    Full text link
    Question classification is an important task with wide applications. However, traditional techniques treat questions as general sentences, ignoring the corresponding answer data. In order to consider answer information into question modeling, we first introduce novel group sparse autoencoders which refine question representation by utilizing group information in the answer set. We then propose novel group sparse CNNs which naturally learn question representation with respect to their answers by implanting group sparse autoencoders into traditional CNNs. The proposed model significantly outperform strong baselines on four datasets.Comment: 6, ACL 201

    Answer Sets for Consistent Query Answering in Inconsistent Databases

    Full text link
    A relational database is inconsistent if it does not satisfy a given set of integrity constraints. Nevertheless, it is likely that most of the data in it is consistent with the constraints. In this paper we apply logic programming based on answer sets to the problem of retrieving consistent information from a possibly inconsistent database. Since consistent information persists from the original database to every of its minimal repairs, the approach is based on a specification of database repairs using disjunctive logic programs with exceptions, whose answer set semantics can be represented and computed by systems that implement stable model semantics. These programs allow us to declare persistence by defaults and repairing changes by exceptions. We concentrate mainly on logic programs for binary integrity constraints, among which we find most of the integrity constraints found in practice.Comment: 34 page

    Detecting missing content queries in an SMS-Based HIV/AIDS FAQ retrieval system

    Get PDF
    Automated Frequently Asked Question (FAQ) answering systems use pre-stored sets of question-answer pairs as an information source to answer natural language questions posed by the users. The main problem with this kind of information source is that there is no guarantee that there will be a relevant question-answer pair for all user queries. In this paper, we propose to deploy a binary classifier in an existing SMS-Based HIV/AIDS FAQ retrieval system to detect user queries that do not have the relevant question-answer pair in the FAQ document collection. Before deploying such a classifier, we first evaluate different feature sets for training in order to determine the sets of features that can build a model that yields the best classification accuracy. We carry out our evaluation using seven different feature sets generated from a query log before and after retrieval by the FAQ retrieval system. Our results suggest that, combining different feature sets markedly improves the classification accuracy

    Loop Formulas for Description Logic Programs

    Full text link
    Description Logic Programs (dl-programs) proposed by Eiter et al. constitute an elegant yet powerful formalism for the integration of answer set programming with description logics, for the Semantic Web. In this paper, we generalize the notions of completion and loop formulas of logic programs to description logic programs and show that the answer sets of a dl-program can be precisely captured by the models of its completion and loop formulas. Furthermore, we propose a new, alternative semantics for dl-programs, called the {\em canonical answer set semantics}, which is defined by the models of completion that satisfy what are called canonical loop formulas. A desirable property of canonical answer sets is that they are free of circular justifications. Some properties of canonical answer sets are also explored.Comment: 29 pages, 1 figures (in pdf), a short version appeared in ICLP'1
    • …
    corecore