555,483 research outputs found

    Answer Set Planning Under Action Costs

    Full text link
    Recently, planning based on answer set programming has been proposed as an approach towards realizing declarative planning systems. In this paper, we present the language Kc, which extends the declarative planning language K by action costs. Kc provides the notion of admissible and optimal plans, which are plans whose overall action costs are within a given limit resp. minimum over all plans (i.e., cheapest plans). As we demonstrate, this novel language allows for expressing some nontrivial planning tasks in a declarative way. Furthermore, it can be utilized for representing planning problems under other optimality criteria, such as computing ``shortest'' plans (with the least number of steps), and refinement combinations of cheapest and fastest plans. We study complexity aspects of the language Kc and provide a transformation to logic programs, such that planning problems are solved via answer set programming. Furthermore, we report experimental results on selected problems. Our experience is encouraging that answer set planning may be a valuable approach to expressive planning systems in which intricate planning problems can be naturally specified and solved

    Answer Set Programming for Non-Stationary Markov Decision Processes

    Full text link
    Non-stationary domains, where unforeseen changes happen, present a challenge for agents to find an optimal policy for a sequential decision making problem. This work investigates a solution to this problem that combines Markov Decision Processes (MDP) and Reinforcement Learning (RL) with Answer Set Programming (ASP) in a method we call ASP(RL). In this method, Answer Set Programming is used to find the possible trajectories of an MDP, from where Reinforcement Learning is applied to learn the optimal policy of the problem. Results show that ASP(RL) is capable of efficiently finding the optimal solution of an MDP representing non-stationary domains

    Learning and Reasoning for Robot Sequential Decision Making under Uncertainty

    Full text link
    Robots frequently face complex tasks that require more than one action, where sequential decision-making (SDM) capabilities become necessary. The key contribution of this work is a robot SDM framework, called LCORPP, that supports the simultaneous capabilities of supervised learning for passive state estimation, automated reasoning with declarative human knowledge, and planning under uncertainty toward achieving long-term goals. In particular, we use a hybrid reasoning paradigm to refine the state estimator, and provide informative priors for the probabilistic planner. In experiments, a mobile robot is tasked with estimating human intentions using their motion trajectories, declarative contextual knowledge, and human-robot interaction (dialog-based and motion-based). Results suggest that, in efficiency and accuracy, our framework performs better than its no-learning and no-reasoning counterparts in office environment.Comment: In proceedings of 34th AAAI conference on Artificial Intelligence, 202

    Expectation-Aware Planning: A Unifying Framework for Synthesizing and Executing Self-Explaining Plans for Human-Aware Planning

    Full text link
    In this work, we present a new planning formalism called Expectation-Aware planning for decision making with humans in the loop where the human's expectations about an agent may differ from the agent's own model. We show how this formulation allows agents to not only leverage existing strategies for handling model differences but can also exhibit novel behaviors that are generated through the combination of these different strategies. Our formulation also reveals a deep connection to existing approaches in epistemic planning. Specifically, we show how we can leverage classical planning compilations for epistemic planning to solve Expectation-Aware planning problems. To the best of our knowledge, the proposed formulation is the first complete solution to decision-making in the presence of diverging user expectations that is amenable to a classical planning compilation while successfully combining previous works on explanation and explicability. We empirically show how our approach provides a computational advantage over existing approximate approaches that unnecessarily try to search in the space of models while also failing to facilitate the full gamut of behaviors enabled by our framework

    KR3^3: An Architecture for Knowledge Representation and Reasoning in Robotics

    Get PDF
    This paper describes an architecture that combines the complementary strengths of declarative programming and probabilistic graphical models to enable robots to represent, reason with, and learn from, qualitative and quantitative descriptions of uncertainty and knowledge. An action language is used for the low-level (LL) and high-level (HL) system descriptions in the architecture, and the definition of recorded histories in the HL is expanded to allow prioritized defaults. For any given goal, tentative plans created in the HL using default knowledge and commonsense reasoning are implemented in the LL using probabilistic algorithms, with the corresponding observations used to update the HL history. Tight coupling between the two levels enables automatic selection of relevant variables and generation of suitable action policies in the LL for each HL action, and supports reasoning with violation of defaults, noisy observations and unreliable actions in large and complex domains. The architecture is evaluated in simulation and on physical robots transporting objects in indoor domains; the benefit on robots is a reduction in task execution time of 39% compared with a purely probabilistic, but still hierarchical, approach.Comment: The paper appears in the Proceedings of the 15th International Workshop on Non-Monotonic Reasoning (NMR 2014

    Briefing paper : findings from an evaluation of initial assessment materials

    Get PDF
    • …
    corecore