582 research outputs found

    Input anticipating critical reservoirs show power law forgetting of unexpected input events

    Full text link
    Usually, reservoir computing shows an exponential memory decay. This paper investigates under which circumstances echo state networks can show a power law forgetting. That means traces of earlier events can be found in the reservoir for very long time spans. Such a setting requires critical connectivity exactly at the limit of what is permissible according the echo state condition. However, for general matrices the limit cannot be determined exactly from theory. In addition, the behavior of the network is strongly influenced by the input flow. Results are presented that use certain types of restricted recurrent connectivity and anticipation learning with regard to the input, where indeed power law forgetting can be achieved

    Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group

    Full text link
    We introduce a novel approach to perform first-order optimization with orthogonal and unitary constraints. This approach is based on a parametrization stemming from Lie group theory through the exponential map. The parametrization transforms the constrained optimization problem into an unconstrained one over a Euclidean space, for which common first-order optimization methods can be used. The theoretical results presented are general enough to cover the special orthogonal group, the unitary group and, in general, any connected compact Lie group. We discuss how this and other parametrizations can be computed efficiently through an implementation trick, making numerically complex parametrizations usable at a negligible runtime cost in neural networks. In particular, we apply our results to RNNs with orthogonal recurrent weights, yielding a new architecture called expRNN. We demonstrate how our method constitutes a more robust approach to optimization with orthogonal constraints, showing faster, accurate, and more stable convergence in several tasks designed to test RNNs

    Non-normal Recurrent Neural Network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics

    Full text link
    A recent strategy to circumvent the exploding and vanishing gradient problem in RNNs, and to allow the stable propagation of signals over long time scales, is to constrain recurrent connectivity matrices to be orthogonal or unitary. This ensures eigenvalues with unit norm and thus stable dynamics and training. However this comes at the cost of reduced expressivity due to the limited variety of orthogonal transformations. We propose a novel connectivity structure based on the Schur decomposition and a splitting of the Schur form into normal and non-normal parts. This allows to parametrize matrices with unit-norm eigenspectra without orthogonality constraints on eigenbases. The resulting architecture ensures access to a larger space of spectrally constrained matrices, of which orthogonal matrices are a subset. This crucial difference retains the stability advantages and training speed of orthogonal RNNs while enhancing expressivity, especially on tasks that require computations over ongoing input sequences

    Zhang Neural Networks for Fast and Accurate Computations of the Field of Values

    Full text link
    In this paper a new and different neural network, called Zhang Neural Network (ZNN) is appropriated from discrete time-varying matrix problems and applied to the angle parameter-varying matrix field of values (FoV) problem. This problem acts as a test bed for newly discovered convergent 1-step ahead finite difference formulas of high truncation orders. The ZNN method that uses a look-ahead finite difference scheme of error order 6 gives us 15+ accurate digits of the FoV boundary in record time when applied to hermitean matrix flows A(t)A(t)

    Center Manifold Dynamics in Randomly Coupled Oscillators and in Cochlea

    Get PDF
    In dynamical systems theory, a fixed point of the activity is called nonhyperbolic if the linearization of the system around the fixed point has at least one eigenvalue with zero real part. The center manifold existence theorem guarantees the local existence of an invariant subspace of the activity, known as a center manifold, around nonhyperbolic fixed points. A growing number of theoretical and experimental studies suggest that neural systems utilize dynamics on center manifolds to display complex, nonlinear behavior and to flexibly adapt to wide-ranging sensory input parameters. In this thesis, I will present two lines of research exploring nonhyperbolicity in neural dynamics

    Learning Transformation Synchronization

    Full text link
    Reconstructing the 3D model of a physical object typically requires us to align the depth scans obtained from different camera poses into the same coordinate system. Solutions to this global alignment problem usually proceed in two steps. The first step estimates relative transformations between pairs of scans using an off-the-shelf technique. Due to limited information presented between pairs of scans, the resulting relative transformations are generally noisy. The second step then jointly optimizes the relative transformations among all input depth scans. A natural constraint used in this step is the cycle-consistency constraint, which allows us to prune incorrect relative transformations by detecting inconsistent cycles. The performance of such approaches, however, heavily relies on the quality of the input relative transformations. Instead of merely using the relative transformations as the input to perform transformation synchronization, we propose to use a neural network to learn the weights associated with each relative transformation. Our approach alternates between transformation synchronization using weighted relative transformations and predicting new weights of the input relative transformations using a neural network. We demonstrate the usefulness of this approach across a wide range of datasets

    Lipschitz Recurrent Neural Networks

    Full text link
    Viewing recurrent neural networks (RNNs) as continuous-time dynamical systems, we propose a recurrent unit that describes the hidden state's evolution with two parts: a well-understood linear component plus a Lipschitz nonlinearity. This particular functional form facilitates stability analysis of the long-term behavior of the recurrent unit using tools from nonlinear systems theory. In turn, this enables architectural design decisions before experimentation. Sufficient conditions for global stability of the recurrent unit are obtained, motivating a novel scheme for constructing hidden-to-hidden matrices. Our experiments demonstrate that the Lipschitz RNN can outperform existing recurrent units on a range of benchmark tasks, including computer vision, language modeling and speech prediction tasks. Finally, through Hessian-based analysis we demonstrate that our Lipschitz recurrent unit is more robust with respect to input and parameter perturbations as compared to other continuous-time RNNs

    Magnetic Eigenmaps for the Visualization of Directed Networks

    Full text link
    We propose a framework for the visualization of directed networks relying on the eigenfunctions of the magnetic Laplacian, called here Magnetic Eigenmaps. The magnetic Laplacian is a complex deformation of the well-known combinatorial Laplacian. Features such as density of links and directionality patterns are revealed by plotting the phases of the first magnetic eigenvectors. An interpretation of the magnetic eigenvectors is given in connection with the angular synchronization problem. Illustrations of our method are given for both artificial and real networks

    Applications of Structural Balance in Signed Social Networks

    Full text link
    We present measures, models and link prediction algorithms based on the structural balance in signed social networks. Certain social networks contain, in addition to the usual 'friend' links, 'enemy' links. These networks are called signed social networks. A classical and major concept for signed social networks is that of structural balance, i.e., the tendency of triangles to be 'balanced' towards including an even number of negative edges, such as friend-friend-friend and friend-enemy-enemy triangles. In this article, we introduce several new signed network analysis methods that exploit structural balance for measuring partial balance, for finding communities of people based on balance, for drawing signed social networks, and for solving the problem of link prediction. Notably, the introduced methods are based on the signed graph Laplacian and on the concept of signed resistance distances. We evaluate our methods on a collection of four signed social network datasets.Comment: 37 page

    LieDetect: Detection of representation orbits of compact Lie groups from point clouds

    Full text link
    We suggest a new algorithm to estimate representations of compact Lie groups from finite samples of their orbits. Different from other reported techniques, our method allows the retrieval of the precise representation type as a direct sum of irreducible representations. Moreover, the knowledge of the representation type permits the reconstruction of its orbit, which is useful to identify the Lie group that generates the action. Our algorithm is general for any compact Lie group, but only instantiations for SO(2), T^d, SU(2) and SO(3) are considered. Theoretical guarantees of robustness in terms of Hausdorff and Wasserstein distances are derived. Our tools are drawn from geometric measure theory, computational geometry, and optimization on matrix manifolds. The algorithm is tested for synthetic data up to dimension 16, as well as real-life applications in image analysis, harmonic analysis, and classical mechanics systems, achieving very accurate results.Comment: 84 pages, 16 figure
    corecore