5,811 research outputs found

    Another construction of edge-regular graphs with regular cliques

    Full text link
    We exhibit a new construction of edge-regular graphs with regular cliques that are not strongly regular. The infinite family of graphs resulting from this construction includes an edge-regular graph with parameters (24,8,2)(24,8,2). We also show that edge-regular graphs with 11-regular cliques that are not strongly regular must have at least 2424 vertices.Comment: 7 page

    On vertex coloring without monochromatic triangles

    Full text link
    We study a certain relaxation of the classic vertex coloring problem, namely, a coloring of vertices of undirected, simple graphs, such that there are no monochromatic triangles. We give the first classification of the problem in terms of classic and parametrized algorithms. Several computational complexity results are also presented, which improve on the previous results found in the literature. We propose the new structural parameter for undirected, simple graphs -- the triangle-free chromatic number χ3\chi_3. We bound χ3\chi_3 by other known structural parameters. We also present two classes of graphs with interesting coloring properties, that play pivotal role in proving useful observation about our problem. We give/ask several conjectures/questions throughout this paper to encourage new research in the area of graph coloring.Comment: Extended abstrac

    On the editing distance of graphs

    Get PDF
    An edge-operation on a graph GG is defined to be either the deletion of an existing edge or the addition of a nonexisting edge. Given a family of graphs G\mathcal{G}, the editing distance from GG to G\mathcal{G} is the smallest number of edge-operations needed to modify GG into a graph from G\mathcal{G}. In this paper, we fix a graph HH and consider Forb(n,H){\rm Forb}(n,H), the set of all graphs on nn vertices that have no induced copy of HH. We provide bounds for the maximum over all nn-vertex graphs GG of the editing distance from GG to Forb(n,H){\rm Forb}(n,H), using an invariant we call the {\it binary chromatic number} of the graph HH. We give asymptotically tight bounds for that distance when HH is self-complementary and exact results for several small graphs HH

    On the Complexity of Polytope Isomorphism Problems

    Full text link
    We show that the problem to decide whether two (convex) polytopes, given by their vertex-facet incidences, are combinatorially isomorphic is graph isomorphism complete, even for simple or simplicial polytopes. On the other hand, we give a polynomial time algorithm for the combinatorial polytope isomorphism problem in bounded dimensions. Furthermore, we derive that the problems to decide whether two polytopes, given either by vertex or by facet descriptions, are projectively or affinely isomorphic are graph isomorphism hard. The original version of the paper (June 2001, 11 pages) had the title ``On the Complexity of Isomorphism Problems Related to Polytopes''. The main difference between the current and the former version is a new polynomial time algorithm for polytope isomorphism in bounded dimension that does not rely on Luks polynomial time algorithm for checking two graphs of bounded valence for isomorphism. Furthermore, the treatment of geometric isomorphism problems was extended.Comment: 16 pages; to appear in: Graphs and Comb.; replaces our paper ``On the Complexity of Isomorphism Problems Related to Polytopes'' (June 2001
    corecore