4,239 research outputs found

    GraphBLAST: A High-Performance Linear Algebra-based Graph Framework on the GPU

    Full text link
    High-performance implementations of graph algorithms are challenging to implement on new parallel hardware such as GPUs because of three challenges: (1) the difficulty of coming up with graph building blocks, (2) load imbalance on parallel hardware, and (3) graph problems having low arithmetic intensity. To address some of these challenges, GraphBLAS is an innovative, on-going effort by the graph analytics community to propose building blocks based on sparse linear algebra, which will allow graph algorithms to be expressed in a performant, succinct, composable and portable manner. In this paper, we examine the performance challenges of a linear-algebra-based approach to building graph frameworks and describe new design principles for overcoming these bottlenecks. Among the new design principles is exploiting input sparsity, which allows users to write graph algorithms without specifying push and pull direction. Exploiting output sparsity allows users to tell the backend which values of the output in a single vectorized computation they do not want computed. Load-balancing is an important feature for balancing work amongst parallel workers. We describe the important load-balancing features for handling graphs with different characteristics. The design principles described in this paper have been implemented in "GraphBLAST", the first high-performance linear algebra-based graph framework on NVIDIA GPUs that is open-source. The results show that on a single GPU, GraphBLAST has on average at least an order of magnitude speedup over previous GraphBLAS implementations SuiteSparse and GBTL, comparable performance to the fastest GPU hardwired primitives and shared-memory graph frameworks Ligra and Gunrock, and better performance than any other GPU graph framework, while offering a simpler and more concise programming model.Comment: 50 pages, 14 figures, 14 table

    Two-Language, Two-Paradigm Introductory Computing Curriculum Model and its Implementation

    Get PDF
    This paper analyzes difficulties with the introduction of object-oriented concepts in introductory computing education and then proposes a two-language, two-paradigm curriculum model that alleviates such difficulties. Our two-language, two-paradigm curriculum model begins with teaching imperative programming using Python programming language, continues with teaching object-oriented computing using Java, and concludes with teaching object-oriented data structures with Java

    Towards Unbiased BFS Sampling

    Full text link
    Breadth First Search (BFS) is a widely used approach for sampling large unknown Internet topologies. Its main advantage over random walks and other exploration techniques is that a BFS sample is a plausible graph on its own, and therefore we can study its topological characteristics. However, it has been empirically observed that incomplete BFS is biased toward high-degree nodes, which may strongly affect the measurements. In this paper, we first analytically quantify the degree bias of BFS sampling. In particular, we calculate the node degree distribution expected to be observed by BFS as a function of the fraction f of covered nodes, in a random graph RG(pk) with an arbitrary degree distribution pk. We also show that, for RG(pk), all commonly used graph traversal techniques (BFS, DFS, Forest Fire, Snowball Sampling, RDS) suffer from exactly the same bias. Next, based on our theoretical analysis, we propose a practical BFS-bias correction procedure. It takes as input a collected BFS sample together with its fraction f. Even though RG(pk) does not capture many graph properties common in real-life graphs (such as assortativity), our RG(pk)-based correction technique performs well on a broad range of Internet topologies and on two large BFS samples of Facebook and Orkut networks. Finally, we consider and evaluate a family of alternative correction procedures, and demonstrate that, although they are unbiased for an arbitrary topology, their large variance makes them far less effective than the RG(pk)-based technique.Comment: BFS, RDS, graph traversal, sampling bias correctio

    Machine Learning for Neuroimaging with Scikit-Learn

    Get PDF
    Statistical machine learning methods are increasingly used for neuroimaging data analysis. Their main virtue is their ability to model high-dimensional datasets, e.g. multivariate analysis of activation images or resting-state time series. Supervised learning is typically used in decoding or encoding settings to relate brain images to behavioral or clinical observations, while unsupervised learning can uncover hidden structures in sets of images (e.g. resting state functional MRI) or find sub-populations in large cohorts. By considering different functional neuroimaging applications, we illustrate how scikit-learn, a Python machine learning library, can be used to perform some key analysis steps. Scikit-learn contains a very large set of statistical learning algorithms, both supervised and unsupervised, and its application to neuroimaging data provides a versatile tool to study the brain.Comment: Frontiers in neuroscience, Frontiers Research Foundation, 2013, pp.1
    corecore