49,927 research outputs found

    Probabilistic Numerics and Uncertainty in Computations

    Full text link
    We deliver a call to arms for probabilistic numerical methods: algorithms for numerical tasks, including linear algebra, integration, optimization and solving differential equations, that return uncertainties in their calculations. Such uncertainties, arising from the loss of precision induced by numerical calculation with limited time or hardware, are important for much contemporary science and industry. Within applications such as climate science and astrophysics, the need to make decisions on the basis of computations with large and complex data has led to a renewed focus on the management of numerical uncertainty. We describe how several seminal classic numerical methods can be interpreted naturally as probabilistic inference. We then show that the probabilistic view suggests new algorithms that can flexibly be adapted to suit application specifics, while delivering improved empirical performance. We provide concrete illustrations of the benefits of probabilistic numeric algorithms on real scientific problems from astrometry and astronomical imaging, while highlighting open problems with these new algorithms. Finally, we describe how probabilistic numerical methods provide a coherent framework for identifying the uncertainty in calculations performed with a combination of numerical algorithms (e.g. both numerical optimisers and differential equation solvers), potentially allowing the diagnosis (and control) of error sources in computations.Comment: Author Generated Postprint. 17 pages, 4 Figures, 1 Tabl

    Representation Learning: A Review and New Perspectives

    Full text link
    The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is because different representations can entangle and hide more or less the different explanatory factors of variation behind the data. Although specific domain knowledge can be used to help design representations, learning with generic priors can also be used, and the quest for AI is motivating the design of more powerful representation-learning algorithms implementing such priors. This paper reviews recent work in the area of unsupervised feature learning and deep learning, covering advances in probabilistic models, auto-encoders, manifold learning, and deep networks. This motivates longer-term unanswered questions about the appropriate objectives for learning good representations, for computing representations (i.e., inference), and the geometrical connections between representation learning, density estimation and manifold learning

    Multiobjective Tactical Planning under Uncertainty for Air Traffic Flow and Capacity Management

    Get PDF
    We investigate a method to deal with congestion of sectors and delays in the tactical phase of air traffic flow and capacity management. It relies on temporal objectives given for every point of the flight plans and shared among the controllers in order to create a collaborative environment. This would enhance the transition from the network view of the flow management to the local view of air traffic control. Uncertainty is modeled at the trajectory level with temporal information on the boundary points of the crossed sectors and then, we infer the probabilistic occupancy count. Therefore, we can model the accuracy of the trajectory prediction in the optimization process in order to fix some safety margins. On the one hand, more accurate is our prediction; more efficient will be the proposed solutions, because of the tighter safety margins. On the other hand, when uncertainty is not negligible, the proposed solutions will be more robust to disruptions. Furthermore, a multiobjective algorithm is used to find the tradeoff between the delays and congestion, which are antagonist in airspace with high traffic density. The flow management position can choose manually, or automatically with a preference-based algorithm, the adequate solution. This method is tested against two instances, one with 10 flights and 5 sectors and one with 300 flights and 16 sectors.Comment: IEEE Congress on Evolutionary Computation (2013). arXiv admin note: substantial text overlap with arXiv:1309.391
    corecore