4,554 research outputs found

    Visualizing Multivariate Hierarchic Data Using Enhanced Radial Space-Filling Layout

    Get PDF
    Currently, visualization tools for large ontologies (e.g., pathway and gene ontologies) result in a very flat wide tree that is difficult to fit on a single display. This paper develops the concept of using an enhanced radial space-filling (ERSF) layout to show biological ontologies efficiently. The ERSF technique represents ontology terms as circular regions in 3D. Orbital connections in a third dimension correspond to non-tree edges in the ontology that exist when an ontology term belongs to multiple categories. Biologists can use the ERSF layout to identify highly activated pathway or gene ontology categories by mapping experimental statistics such as coefficient of variation and overrepresentation values onto the visualization. This paper illustrates the use of the ERSF layout to explore pathway and gene ontologies using a gene expression dataset from E. coli

    A review of data visualization: opportunities in manufacturing sequence management.

    No full text
    Data visualization now benefits from developments in technologies that offer innovative ways of presenting complex data. Potentially these have widespread application in communicating the complex information domains typical of manufacturing sequence management environments for global enterprises. In this paper the authors review the visualization functionalities, techniques and applications reported in literature, map these to manufacturing sequence information presentation requirements and identify the opportunities available and likely development paths. Current leading-edge practice in dynamic updating and communication with suppliers is not being exploited in manufacturing sequence management; it could provide significant benefits to manufacturing business. In the context of global manufacturing operations and broad-based user communities with differing needs served by common data sets, tool functionality is generally ahead of user application

    A visual workspace for constructing hybrid MDS algorithms and coordinating multiple views

    Get PDF
    Data can be distinguished according to volume, variable types and distribution, and each of these characteristics imposes constraints upon the choice of applicable algorithms for their visualisation. This has led to an abundance of often disparate algorithmic techniques. Previous work has shown that a hybrid algorithmic approach can be successful in addressing the impact of data volume on the feasibility of multidimensional scaling (MDS). This paper presents a system and framework in which a user can easily explore algorithms as well as their hybrid conjunctions and the data flowing through them. Visual programming and a novel algorithmic architecture let the user semi-automatically define data flows and the co-ordination of multiple views of algorithmic and visualisation components. We propose that our approach has two main benefits: significant improvements in run times of MDS algorithms can be achieved, and intermediate views of the data and the visualisation program structure can provide greater insight and control over the visualisation process

    The State of the Art in Cartograms

    Full text link
    Cartograms combine statistical and geographical information in thematic maps, where areas of geographical regions (e.g., countries, states) are scaled in proportion to some statistic (e.g., population, income). Cartograms make it possible to gain insight into patterns and trends in the world around us and have been very popular visualizations for geo-referenced data for over a century. This work surveys cartogram research in visualization, cartography and geometry, covering a broad spectrum of different cartogram types: from the traditional rectangular and table cartograms, to Dorling and diffusion cartograms. A particular focus is the study of the major cartogram dimensions: statistical accuracy, geographical accuracy, and topological accuracy. We review the history of cartograms, describe the algorithms for generating them, and consider task taxonomies. We also review quantitative and qualitative evaluations, and we use these to arrive at design guidelines and research challenges

    QoS: Quality Driven Data Abstraction for Large Databases

    Get PDF
    Data abstraction is the process of reducing a large dataset into one of moderate size, while maintaining dominant characteristics of the original dataset. Data abstraction quality refers to the degree by which the abstraction represents original data. Clearly, the quality of an abstraction directly affects the confidence an analyst can have in results derived from such abstracted views about the actual data. While some initial measures to quantify the quality of abstraction have been proposed, they currently can only be used as an after thought. While an analyst can be made aware of the quality of the data he works with, he cannot control the desired quality and the trade off between the size of the abstraction and its quality. While some analysts require atleast a certain minimal level of quality, others must be able to work with certain sized abstraction due to resource limitations. consider the quality of the data while generating an abstraction. To tackle these problems, we propose a new data abstraction generation model, called the QoS model, that presents the performance quality trade-off to the analyst and considers that quality of the data while generating an abstraction. As the next step, it generates abstraction based on the desired level of quality versus time as indicated by the analyst. The framework has been integrated into XmdvTool, a freeware multi-variate data visualization tool developed at WPI. Our experimental results show that our approach provides better quality with the same resource usage compared to existing abstraction techniques
    • …
    corecore