275 research outputs found

    Constructive Geometry and the Parallel Postulate

    Full text link
    Euclidean geometry consists of straightedge-and-compass constructions and reasoning about the results of those constructions. We show that Euclidean geometry can be developed using only intuitionistic logic. We consider three versions of Euclid's parallel postulate: Euclid's own formulation in his Postulate 5; Playfair's 1795 version, and a new version we call the strong parallel postulate. These differ in that Euclid's version and the new version both assert the existence of a point where two lines meet, while Playfair's version makes no existence assertion. Classically, the models of Euclidean (straightedge-and-compass) geometry are planes over Euclidean fields. We prove a similar theorem for constructive Euclidean geometry, by showing how to define addition and multiplication without a case distinction about the sign of the arguments. With intuitionistic logic, there are two possible definitions of Euclidean fields, which turn out to correspond to the different versions of the parallel axiom. In this paper, we completely settle the questions about implications between the three versions of the parallel postulate: the strong parallel postulate easily implies Euclid 5, and in fact Euclid 5 also implies the strong parallel postulate, although the proof is lengthy, depending on the verification that Euclid 5 suffices to define multiplication geometrically. We show that Playfair does not imply Euclid 5, and we also give some other independence results. Our independence proofs are given without discussing the exact choice of the other axioms of geometry; all we need is that one can interpret the geometric axioms in Euclidean field theory. The proofs use Kripke models of Euclidean field theories based on carefully constructed rings of real-valued functions.Comment: 114 pages, 39 figure

    Did Lobachevsky Have A Model Of His "imaginary Geometry"?

    Get PDF
    The invention of non-Euclidean geometries is often seen through the optics of Hilbertian formal axiomatic method developed later in the 19th century. However such an anachronistic approach fails to provide a sound reading of Lobachevsky's geometrical works. Although the modern notion of model of a given theory has a counterpart in Lobachevsky's writings its role in Lobachevsky's geometrical theory turns to be very unusual. Lobachevsky doesn't consider various models of Hyperbolic geometry, as the modern reader would expect, but uses a non-standard model of Euclidean plane (as a particular surface in the Hyperbolic 3-space). In this paper I consider this Lobachevsky's construction, and show how it can be better analyzed within an alternative non-Hilbertian foundational framework, which relates the history of geometry of the 19th century to some recent developments in the field.Comment: 31 pages, 8 figure

    The Steiner-Lehmus theorem and "triangles with congruent medians are isosceles" hold in weak geometries

    Full text link
    We prove that (i) a generalization of the Steiner-Lehmus theorem due to A. Henderson holds in Bachmann's standard ordered metric planes, (ii) that a variant of Steiner-Lehmus holds in all metric planes, and (iii) that the fact that a triangle with two congruent medians is isosceles holds in Hjelmslev planes without double incidences of characteristic 3\neq 3

    Vittorio Checcucci and his contributions to mathematics education: a historical overview

    Get PDF
    This study deals with Vittorio Checcucci’s ideas and proposals as to mathematics education. The scopes of this work are twofold: 1) the first scope is historical: my aim is to reconstruct Checcucci’s thought. This is a novelty because almost no contribution dedicated to Checcucci exists. The few existing contributions are brief articles whose aim is not to provide a general picture of his ideas; 2) the second scope is connected to mathematics education in the 21st century. A series of argumentations will be proposed to prove that many Checcucci’s ideas could be fruitfully exploited nowadays. For the first time, the thought of this mathematician is exposed to non-Italian readers because his ideas are worthy to be known, rethought and discussed in an international context

    Proof-checking Euclid

    Get PDF
    We used computer proof-checking methods to verify the correctness of our proofs of the propositions in Euclid Book I. We used axioms as close as possible to those of Euclid, in a language closely related to that used in Tarski's formal geometry. We used proofs as close as possible to those given by Euclid, but filling Euclid's gaps and correcting errors. Euclid Book I has 48 propositions, we proved 235 theorems. The extras were partly "Book Zero", preliminaries of a very fundamental nature, partly propositions that Euclid omitted but were used implicitly, partly advanced theorems that we found necessary to fill Euclid's gaps, and partly just variants of Euclid's propositions. We wrote these proofs in a simple fragment of first-order logic corresponding to Euclid's logic, debugged them using a custom software tool, and then checked them in the well-known and trusted proof checkers HOL Light and Coq.Comment: 53 page
    corecore