602 research outputs found

    Relation between powers of factors and recurrence function characterizing Sturmian words

    Get PDF
    In this paper we use the relation of the index of an infinite aperiodic word and its recurrence function to give another characterization of Sturmian words. As a byproduct, we give a new proof of theorem describing the index of a Sturmian word in terms of the continued fraction expansion of its slope. This theorem was independently proved by Carpi and de Luca, and Damanik and Lenz.Comment: 11 page

    On the Structure of Bispecial Sturmian Words

    Full text link
    A balanced word is one in which any two factors of the same length contain the same number of each letter of the alphabet up to one. Finite binary balanced words are called Sturmian words. A Sturmian word is bispecial if it can be extended to the left and to the right with both letters remaining a Sturmian word. There is a deep relation between bispecial Sturmian words and Christoffel words, that are the digital approximations of Euclidean segments in the plane. In 1997, J. Berstel and A. de Luca proved that \emph{palindromic} bispecial Sturmian words are precisely the maximal internal factors of \emph{primitive} Christoffel words. We extend this result by showing that bispecial Sturmian words are precisely the maximal internal factors of \emph{all} Christoffel words. Our characterization allows us to give an enumerative formula for bispecial Sturmian words. We also investigate the minimal forbidden words for the language of Sturmian words.Comment: arXiv admin note: substantial text overlap with arXiv:1204.167

    Extremal properties of (epi)Sturmian sequences and distribution modulo 1

    Get PDF
    Starting from a study of Y. Bugeaud and A. Dubickas (2005) on a question in distribution of real numbers modulo 1 via combinatorics on words, we survey some combinatorial properties of (epi)Sturmian sequences and distribution modulo 1 in connection to their work. In particular we focus on extremal properties of (epi)Sturmian sequences, some of which have been rediscovered several times

    A Characterization of Bispecial Sturmian Words

    Full text link
    A finite Sturmian word w over the alphabet {a,b} is left special (resp. right special) if aw and bw (resp. wa and wb) are both Sturmian words. A bispecial Sturmian word is a Sturmian word that is both left and right special. We show as a main result that bispecial Sturmian words are exactly the maximal internal factors of Christoffel words, that are words coding the digital approximations of segments in the Euclidean plane. This result is an extension of the known relation between central words and primitive Christoffel words. Our characterization allows us to give an enumerative formula for bispecial Sturmian words. We also investigate the minimal forbidden words for the set of Sturmian words.Comment: Accepted to MFCS 201

    Distributing Labels on Infinite Trees

    Get PDF
    Sturmian words are infinite binary words with many equivalent definitions: They have a minimal factor complexity among all aperiodic sequences; they are balanced sequences (the labels 0 and 1 are as evenly distributed as possible) and they can be constructed using a mechanical definition. All this properties make them good candidates for being extremal points in scheduling problems over two processors. In this paper, we consider the problem of generalizing Sturmian words to trees. The problem is to evenly distribute labels 0 and 1 over infinite trees. We show that (strongly) balanced trees exist and can also be constructed using a mechanical process as long as the tree is irrational. Such trees also have a minimal factor complexity. Therefore they bring the hope that extremal scheduling properties of Sturmian words can be extended to such trees, as least partially. Such possible extensions are illustrated by one such example.Comment: 30 pages, use pgf/tik

    Characterizations of finite and infinite episturmian words via lexicographic orderings

    Get PDF
    In this paper, we characterize by lexicographic order all finite Sturmian and episturmian words, i.e., all (finite) factors of such infinite words. Consequently, we obtain a characterization of infinite episturmian words in a "wide sense" (episturmian and episkew infinite words). That is, we characterize the set of all infinite words whose factors are (finite) episturmian. Similarly, we characterize by lexicographic order all balanced infinite words over a 2-letter alphabet; in other words, all Sturmian and skew infinite words, the factors of which are (finite) Sturmian.Comment: 18 pages; to appear in the European Journal of Combinatoric
    • …
    corecore