970 research outputs found

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Conscript Your Friends into Larger Anonymity Sets with JavaScript

    Full text link
    We present the design and prototype implementation of ConScript, a framework for using JavaScript to allow casual Web users to participate in an anonymous communication system. When a Web user visits a cooperative Web site, the site serves a JavaScript application that instructs the browser to create and submit "dummy" messages into the anonymity system. Users who want to send non-dummy messages through the anonymity system use a browser plug-in to replace these dummy messages with real messages. Creating such conscripted anonymity sets can increase the anonymity set size available to users of remailer, e-voting, and verifiable shuffle-style anonymity systems. We outline ConScript's architecture, we address a number of potential attacks against ConScript, and we discuss the ethical issues related to deploying such a system. Our implementation results demonstrate the practicality of ConScript: a workstation running our ConScript prototype JavaScript client generates a dummy message for a mix-net in 81 milliseconds and it generates a dummy message for a DoS-resistant DC-net in 156 milliseconds.Comment: An abbreviated version of this paper will appear at the WPES 2013 worksho

    Dovetail: Stronger Anonymity in Next-Generation Internet Routing

    Full text link
    Current low-latency anonymity systems use complex overlay networks to conceal a user's IP address, introducing significant latency and network efficiency penalties compared to normal Internet usage. Rather than obfuscating network identity through higher level protocols, we propose a more direct solution: a routing protocol that allows communication without exposing network identity, providing a strong foundation for Internet privacy, while allowing identity to be defined in those higher level protocols where it adds value. Given current research initiatives advocating "clean slate" Internet designs, an opportunity exists to design an internetwork layer routing protocol that decouples identity from network location and thereby simplifies the anonymity problem. Recently, Hsiao et al. proposed such a protocol (LAP), but it does not protect the user against a local eavesdropper or an untrusted ISP, which will not be acceptable for many users. Thus, we propose Dovetail, a next-generation Internet routing protocol that provides anonymity against an active attacker located at any single point within the network, including the user's ISP. A major design challenge is to provide this protection without including an application-layer proxy in data transmission. We address this challenge in path construction by using a matchmaker node (an end host) to overlap two path segments at a dovetail node (a router). The dovetail then trims away part of the path so that data transmission bypasses the matchmaker. Additional design features include the choice of many different paths through the network and the joining of path segments without requiring a trusted third party. We develop a systematic mechanism to measure the topological anonymity of our designs, and we demonstrate the privacy and efficiency of our proposal by simulation, using a model of the complete Internet at the AS-level

    Mitigating Distributed Denial of Service Attacks in an Anonymous Routing Environment: Client Puzzles and Tor

    Get PDF
    Online intelligence operations use the Internet to gather information on the activities of U.S. adversaries. The security of these operations is paramount, and one way to avoid being linked to the Department of Defense (DoD) is to use anonymous communication systems. One such system, Tor, makes interactive TCP services anonymous. Tor uses the Transport Layer Security (TLS) protocol and is thus vulnerable to a distributed denial-of-service (DDoS) attack that can significantly delay data traversing the Tor network. This research uses client puzzles to mitigate TLS DDoS attacks. A novel puzzle protocol, the Memoryless Puzzle Protocol (MPP), is conceived, implemented, and analyzed for anonymity and DDoS vulnerabilities. Consequently, four new secondary DDoS and anonymity attacks are identified and defenses are proposed. Furthermore, analysis of the MPP identified and resolved two important shortcomings of the generalized client puzzle technique. Attacks that normally induce victim CPU utilization rates of 80-100% are reduced to below 70%. Also, the puzzle implementation allows for user-data latency to be reduced by close to 50% during a large-scale attack .Finally, experimental results show successful mitigation can occur without sending a puzzle to every requesting client. By adjusting the maximum puzzle strength, CPU utilization can be capped at 70% even when an arbitrary client has only a 30% chance of receiving a puzzle

    Dynamic Mobile Anonymity with Mixing

    Full text link
    Staying anonymous and not revealing real identity is highly desired in today's mobile business. Especially generic frameworks for different kinds of context-aware mobile business applications should provide communication anonymity of mobile users as a core security feature. For enabling communication anonymity, Mix-net based solutions are widely accepted and used. But directly deploying existing Mix-net clients on mobile devices with limited hardware capacity is not a realistic approach. In addition, different anonymity sensitivities of both applications and users require to enforce anonymity dynamically rather than on a fixed level. In this paper, we present an approach towards a solution that addresses the specific anonymity challenges in mobile business while exploiting the benefits of existing Mix-net frameworks
    • …
    corecore