161 research outputs found

    Active Attack Detection and Unavailability over ALERT Protocol in MANET

    Get PDF
    Mobile Ad-Hoc Network (MANET) is a temporary network, consists of several wireless moving nodes, has no infrastructure or centralized access point such as base station. Security is the big issue in MANET because of its nature of openness, dynamic topology, decentralized monitoring. Anonymity is to hide the subjects among another. Anonymity is one of the solutions to avoid the attacks on the network. Anonymous Location based Efficient Routing proTocol (ALERT) which provides anonymity protection for sources, destinations and routes. It also effectively counters intersection and timing attacks. ALERT is not bulletproof to all attacks like availability and active attacks and existing solutions for active attacks had not provided anonymity protection. In this paper ALERT-APD (ALERT- Assured Packet Delivery algorithm) is proposed for availability attack and ALERT-S (ALERT Security) is for active attack detection over ALERT protocol in MANET. As in this paper MANET is protected from active attack over ALERT protocol, system will give twenty five percent more effective security and anonymity protection than existing system

    Privacy and trustworthiness management in moving object environments

    Get PDF
    The use of location-based services (LBS) (e.g., Intel\u27s Thing Finder) is expanding. Besides the traditional centralized location-based services, distributed ones are also emerging due to the development of Vehicular Ad-hoc Networks (VANETs), a dynamic network which allows vehicles to communicate with one another. Due to the nature of the need of tracking users\u27 locations, LBS have raised increasing concerns on users\u27 location privacy. Although many research has been carried out for users to submit their locations anonymously, the collected anonymous location data may still be mapped to individuals when the adversary has related background knowledge. To improve location privacy, in this dissertation, the problem of anonymizing the collected location datasets is addressed so that they can be published for public use without violating any privacy concerns. Specifically, a privacy-preserving trajectory publishing algorithm is proposed that preserves high data utility rate. Moreover, the scalability issue is tackled in the case the location datasets grows gigantically due to continuous data collection as well as increase of LBS users by developing a distributed version of our trajectory publishing algorithm which leveraging the MapReduce technique. As a consequence of users being anonymous, it becomes more challenging to evaluate the trustworthiness of messages disseminated by anonymous users. Existing research efforts are mainly focused on privacy-preserving authentication of users which helps in tracing malicious vehicles only after the damage is done. However, it is still not sufficient to prevent malicious behavior from happening in the case where attackers do not care whether they are caught later on. Therefore, it would be more effective to also evaluate the content of the message. In this dissertation, a novel information-oriented trustworthiness evaluation is presented which enables each individual user to evaluate the message content and make informed decisions --Abstract, page iii

    AdaptAnon: adaptive anonymity for service queries in mobile opportunistic networks

    Get PDF

    Location Privacy in Spatial Crowdsourcing

    Full text link
    Spatial crowdsourcing (SC) is a new platform that engages individuals in collecting and analyzing environmental, social and other spatiotemporal information. With SC, requesters outsource their spatiotemporal tasks to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. This chapter identifies privacy threats toward both workers and requesters during the two main phases of spatial crowdsourcing, tasking and reporting. Tasking is the process of identifying which tasks should be assigned to which workers. This process is handled by a spatial crowdsourcing server (SC-server). The latter phase is reporting, in which workers travel to the tasks' locations, complete the tasks and upload their reports to the SC-server. The challenge is to enable effective and efficient tasking as well as reporting in SC without disclosing the actual locations of workers (at least until they agree to perform a task) and the tasks themselves (at least to workers who are not assigned to those tasks). This chapter aims to provide an overview of the state-of-the-art in protecting users' location privacy in spatial crowdsourcing. We provide a comparative study of a diverse set of solutions in terms of task publishing modes (push vs. pull), problem focuses (tasking and reporting), threats (server, requester and worker), and underlying technical approaches (from pseudonymity, cloaking, and perturbation to exchange-based and encryption-based techniques). The strengths and drawbacks of the techniques are highlighted, leading to a discussion of open problems and future work

    Development of Advanced Location Based Efficient Routing in MANETs

    Get PDF
    Mobile Ad Hoc Networks (MANETs) use routing protocols that are anonymous and provides hiding of crucial node identities and routes, so that outside observers cannot trace the route and also the crucial nodes, in this way it provides better protection. There are many existing anonymous routing protocols which rely on either hop-by-hop encryption or redundant traffic. Both the methods used are highly costly and also they don't generate full anonymity protection to the nodes or routers and also the source and destination. As the cost is high while using this anonymity protection categories it creates problem in the resource constraints in MANETs especially in multimedia wireless applications high cost exacerbates the intrinsic resource constraint problem are seen in MANETs especially in wireless multimedia applications. To provide protection at low cost, an Advanced Location-based Efficient Routing in MANET (ALER).It dynamically partitions the network field into different zones and it randomly chooses nodes in zones as intermediate relay nodes, these relay nodes forms a non-traceable anonymous route, not only that the proposed protocol also helps in hiding the sender and the destination also very efficiently. It also has strategies to effectively counter intersection, timing attacks. In this routing technique it has tried to overcome the Sybil attack issues which were not solved by the routing technique. It has prevented the Sybil attack entirely by having forwarding nodes check source routes for loops

    Efficient location privacy-aware forwarding in opportunistic mobile networks

    Get PDF
    This paper proposes a novel fully distributed and collaborative k-anonymity protocol (LPAF) to protect users’ location information and ensure better privacy while forwarding queries/replies to/from untrusted location-based service (LBS) over opportunistic mobile networks (OppMNets. We utilize a lightweight multihop Markov-based stochastic model for location prediction to guide queries toward the LBS’s location and to reduce required resources in terms of retransmission overheads. We develop a formal analytical model and present theoretical analysis and simulation of the proposed protocol performance. We further validate our results by performing extensive simulation experiments over a pseudo realistic city map using map-based mobility models and using real-world data trace to compare LPAF to existing location privacy and benchmark protocols. We show that LPAF manages to keep higher privacy levels in terms of k-anonymity and quality of service in terms of success ratio and delay, as compared with other protocols, while maintaining lower overheads. Simulation results show that LPAF achieves up to an 11% improvement in success ratio for pseudorealistic scenarios, whereas real-world data trace experiments show up to a 24% improvement with a slight increase in the average delay

    X-Vine: Secure and Pseudonymous Routing Using Social Networks

    Full text link
    Distributed hash tables suffer from several security and privacy vulnerabilities, including the problem of Sybil attacks. Existing social network-based solutions to mitigate the Sybil attacks in DHT routing have a high state requirement and do not provide an adequate level of privacy. For instance, such techniques require a user to reveal their social network contacts. We design X-Vine, a protection mechanism for distributed hash tables that operates entirely by communicating over social network links. As with traditional peer-to-peer systems, X-Vine provides robustness, scalability, and a platform for innovation. The use of social network links for communication helps protect participant privacy and adds a new dimension of trust absent from previous designs. X-Vine is resilient to denial of service via Sybil attacks, and in fact is the first Sybil defense that requires only a logarithmic amount of state per node, making it suitable for large-scale and dynamic settings. X-Vine also helps protect the privacy of users social network contacts and keeps their IP addresses hidden from those outside of their social circle, providing a basis for pseudonymous communication. We first evaluate our design with analysis and simulations, using several real world large-scale social networking topologies. We show that the constraints of X-Vine allow the insertion of only a logarithmic number of Sybil identities per attack edge; we show this mitigates the impact of malicious attacks while not affecting the performance of honest nodes. Moreover, our algorithms are efficient, maintain low stretch, and avoid hot spots in the network. We validate our design with a PlanetLab implementation and a Facebook plugin.Comment: 15 page
    • …
    corecore