34,485 research outputs found

    Location Privacy Protection in Social Networks

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Social networks have become more ubiquitous due to new advances in smartphone technology. This has provided an opportunity for social network service providers to utilise location information of users in their services. For example, Facebook Places, Foursquare and Yelp are popular social networks that mostly rely on utilising users' location data in their services. They offer a variety of useful services, from location recommendations to nearby friend alerts. However, protecting location privacy of users is still an open challenge for social network service providers. It has been shown that hiding real identity and choosing a pseudonym does not guarantee to protect a user's privacy since privacy may be invaded by analysing position data only. This is really a big issue since other private information of users can be revealed by analysing their location data (e.g., home address, health condition, interests, etc.). In this study, we investigate the location privacy issue of social networks and propose several solutions. We classify the proposed solutions into three categories based on the selected approaches, i.e. (i) differential privacy-based, (ii) cryptography-based, and (iii) anonymity-based solutions. We first study the approach in which differential privacy is utilised to preserve privacy of users. In this regard, we develop Distance-Based Location Privacy Protection mechanism (DBLP2), a customisable location privacy protection approach that is uniquely designed for social network users. It utilises the concept of social distance to generalise users' location data before it is published in a social network. The level of generalisation is decided based on the social distance between users. Secondly, we study cryptography-based methods for location privacy protection in Location-Based Services (LBS) and social networks. In this domain, we propose three cryptography-based and privacy-aware location verification schemes to preserve location privacy of users: (i) Privacy-Aware and Secure Proof Of pRoximiTy (PASPORT), (ii) Secure, Privacy-Aware and collusion Resistant poSition vErification (SPARSE), and (iii) a blockchain-based location verification scheme. These schemes prevent location spoofing attacks conducted by dishonest users while protect location privacy of users. To the best of our knowledge, majority of the existing location verification schemes do not preserve location privacy of users. Thirdly, we investigate anonymity as another approach to preserve users' privacy in social networks. In this regard, we first study the relevant protocols and discuss their features and drawbacks. Then, we introduce Harmonized and Stable DC-net (HSDC-net), a self-organizing protocol for anonymous communications in social networks. As far as we know, social networks do not offer any secure anonymous communication service. In social networks, privacy of users is preserved using pseudonymity, i.e., users select a pseudonym for their communications instead of their real identity. However, it has been shown that pseudonymity does not always result in anonymity (perfect privacy) if users' activities in social media are linkable. This makes users' privacy vulnerable to deanonymization attacks. Thus, by employing a secure anonymous communication service, social network service providers will be able to effectively preserve users' privacy. We perform extensive experiments and provide comprehensive security and privacy analysis to evaluate performance of the proposed schemes and mechanisms. Regarding the DBLP2 mechanism, our extensive analysis shows that it offers the optimum data utility regarding the trade-off between privacy protection and data utility. In addition, our experimental results indicate that DBLP2 is capable of offering variable location privacy protection and resilience to post processing. For the SPARSE scheme, our analysis and experiments show that SPARSE provides privacy protection as well as security properties for users including integrity, unforgeability and non-transferability of the location proofs. Moreover, it achieves a highly reliable performance against collusions. To validate performance of the PASPORT scheme, we implement a prototype of the proposed scheme on the Android platform. Extensive experiments indicate that the proposed method can efficiently protect location-based applications against fake submissions. For the proposed blockchain-based scheme, our prototype implementation on the Android platform shows that the proposed scheme outperforms other currently deployed location proof schemes. Finally, our prototype implementation of the HSDC-net protocol shows that it achieves low latencies that makes it a practical protocol. In summary, this research study focuses on developing new mechanisms for preserving location privacy of social network users. This is done through different approaches. Moreover, extensive effort is made to make the current location-related schemes and protocols privacy-aware. In this regard, several solutions in the form of scheme, mechanism, and protocol are introduced and their performance is evaluated. The results of this research work have also been presented in seven papers published in peer-reviewed journals and conferences

    ABAKA : a novel attribute-based k-anonymous collaborative solution for LBSs

    Get PDF
    The increasing use of mobile devices, along with advances in telecommunication systems, increased the popularity of Location-Based Services (LBSs). In LBSs, users share their exact location with a potentially untrusted Location-Based Service Provider (LBSP). In such a scenario, user privacy becomes a major con- cern: the knowledge about user location may lead to her identification as well as a continuous tracing of her position. Researchers proposed several approaches to preserve users’ location privacy. They also showed that hiding the location of an LBS user is not enough to guarantee her privacy, i.e., user’s pro- file attributes or background knowledge of an attacker may reveal the user’s identity. In this paper we propose ABAKA, a novel collaborative approach that provides identity privacy for LBS users considering users’ profile attributes. In particular, our solution guarantees p -sensitive k -anonymity for the user that sends an LBS request to the LBSP. ABAKA computes a cloaked area by collaborative multi-hop forwarding of the LBS query, and using Ciphertext-Policy Attribute-Based Encryption (CP-ABE). We ran a thorough set of experiments to evaluate our solution: the results confirm the feasibility and efficiency of our proposal

    Secure Identification in Social Wireless Networks

    Get PDF
    The applications based on social networking have brought revolution towards social life and are continuously gaining popularity among the Internet users. Due to the advanced computational resources offered by the innovative hardware and nominal subscriber charges of network operators, most of the online social networks are transforming into the mobile domain by offering exciting applications and games exclusively designed for users on the go. Moreover, the mobile devices are considered more personal as compared to their desktop rivals, so there is a tendency among the mobile users to store sensitive data like contacts, passwords, bank account details, updated calendar entries with key dates and personal notes on their devices. The Project Social Wireless Network Secure Identification (SWIN) is carried out at Swedish Institute of Computer Science (SICS) to explore the practicality of providing the secure mobile social networking portal with advanced security features to tackle potential security threats by extending the existing methods with more innovative security technologies. In addition to the extensive background study and the determination of marketable use-cases with their corresponding security requirements, this thesis proposes a secure identification design to satisfy the security dimensions for both online and offline peers. We have implemented an initial prototype using PHP Socket and OpenSSL library to simulate the secure identification procedure based on the proposed design. The design is in compliance with 3GPP‟s Generic Authentication Architecture (GAA) and our implementation has demonstrated the flexibility of the solution to be applied independently for the applications requiring secure identification. Finally, the thesis provides strong foundation for the advanced implementation on mobile platform in future

    Privacy Implications of In-Network Aggregation Mechanisms for VANETs

    Get PDF
    Research on vehicular ad hoc networks (VANETs) is active and ongoing. Proposed applications range from safety applications, and traffic efficiency applications to entertainment applications. Common to many applications is the need to disseminate possibly privacy-sensitive information, such as location and speed information, over larger distances. In-network aggregation is a promising technology that can help to make such privacy-sensitive information only available in the direct vicinity of vehicles instead of communicating it over larger areas. Further away, only aggregated information that is not privacy-relevant anymore will be known. At the same time, aggregation mechanisms help to cope with the limited available wireless bandwidth. However, the exact privacy properties of aggregation mechanisms have still not been thoroughly researched. In this paper, we propose a metric to measure privacy enhancements provided by in-network aggregation and use it to compare existing schemes

    A Privacy Preserving Framework for RFID Based Healthcare Systems

    Get PDF
    RFID (Radio Frequency IDentification) is anticipated to be a core technology that will be used in many practical applications of our life in near future. It has received considerable attention within the healthcare for almost a decade now. The technology’s promise to efficiently track hospital supplies, medical equipment, medications and patients is an attractive proposition to the healthcare industry. However, the prospect of wide spread use of RFID tags in the healthcare area has also triggered discussions regarding privacy, particularly because RFID data in transit may easily be intercepted and can be send to track its user (owner). In a nutshell, this technology has not really seen its true potential in healthcare industry since privacy concerns raised by the tag bearers are not properly addressed by existing identification techniques. There are two major types of privacy preservation techniques that are required in an RFID based healthcare system—(1) a privacy preserving authentication protocol is required while sensing RFID tags for different identification and monitoring purposes, and (2) a privacy preserving access control mechanism is required to restrict unauthorized access of private information while providing healthcare services using the tag ID. In this paper, we propose a framework (PriSens-HSAC) that makes an effort to address the above mentioned two privacy issues. To the best of our knowledge, it is the first framework to provide increased privacy in RFID based healthcare systems, using RFID authentication along with access control technique
    • 

    corecore