66 research outputs found

    On Holistic Multi-Step Cyberattack Detection via a Graph-based Correlation Approach

    Full text link
    While digitization of distribution grids through information and communications technology brings numerous benefits, it also increases the grid's vulnerability to serious cyber attacks. Unlike conventional systems, attacks on many industrial control systems such as power grids often occur in multiple stages, with the attacker taking several steps at once to achieve its goal. Detection mechanisms with situational awareness are needed to detect orchestrated attack steps as part of a coherent attack campaign. To provide a foundation for detection and prevention of such attacks, this paper addresses the detection of multi-stage cyber attacks with the aid of a graph-based cyber intelligence database and alert correlation approach. Specifically, we propose an approach to detect multi-stage attacks by leveraging heterogeneous data to form a knowledge base and employ a model-based correlation approach on the generated alerts to identify multi-stage cyber attack sequences taking place in the network. We investigate the detection quality of the proposed approach by using a case study of a multi-stage cyber attack campaign in a future-orientated power grid pilot.Comment: IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm) 202

    Graph-Based Machine Learning for Passive Network Reconnaissance within Encrypted Networks

    Get PDF
    Network reconnaissance identifies a network’s vulnerabilities to both prevent and mitigate the impact of cyber-attacks. The difficulty of performing adequate network reconnaissance has been exacerbated by the rising complexity of modern networks (e.g., encryption). We identify that the majority of network reconnaissance solutions proposed in literature are infeasible for widespread deployment in realistic modern networks. This thesis provides novel network reconnaissance solutions to address the limitations of the existing conventional approaches proposed in literature. The existing approaches are limited by their reliance on large, heterogeneous feature sets making them difficult to deploy under realistic network conditions. In contrast, we devise a bipartite graph-based representation to create network reconnaissance solutions that rely only on a single feature (e.g., the Internet protocol (IP) address field). We exploit a widely available feature set to provide network reconnaissance solutions that are scalable, independent of encryption, and deployable across diverse Internet (TCP/IP) networks. We design bipartite graph embeddings (BGE); a graph-based machine learning (ML) technique for extracting insight from the structural properties of the bipartite graph-based representation. BGE is the first known graph embedding technique designed explicitly for network reconnaissance. We validate the use of BGE through an evaluation of a university’s enterprise network. BGE is shown to provide insight into crucial areas of network reconnaissance (e.g., device characterisation, service prediction, and network visualisation). We design an extension of BGE to acquire insight within a private network. Private networks—such as a virtual private network (VPN)—have posed significant challenges for network reconnaissance as they deny direct visibility into their composition. Our extension of BGE provides the first known solution for inferring the composition of both the devices and applications acting behind diverse private networks. This thesis provides novel graph-based ML techniques for two crucial aims of network reconnaissance—device characterisation and intrusion detection. The techniques developed within this thesis provide unique cybersecurity solutions to both prevent and mitigate the impact of cyber-attacks.Thesis (Ph.D.) -- University of Adelaide, School of Electrical and Electronic Engineering , 202

    A Survey on Enterprise Network Security: Asset Behavioral Monitoring and Distributed Attack Detection

    Full text link
    Enterprise networks that host valuable assets and services are popular and frequent targets of distributed network attacks. In order to cope with the ever-increasing threats, industrial and research communities develop systems and methods to monitor the behaviors of their assets and protect them from critical attacks. In this paper, we systematically survey related research articles and industrial systems to highlight the current status of this arms race in enterprise network security. First, we discuss the taxonomy of distributed network attacks on enterprise assets, including distributed denial-of-service (DDoS) and reconnaissance attacks. Second, we review existing methods in monitoring and classifying network behavior of enterprise hosts to verify their benign activities and isolate potential anomalies. Third, state-of-the-art detection methods for distributed network attacks sourced from external attackers are elaborated, highlighting their merits and bottlenecks. Fourth, as programmable networks and machine learning (ML) techniques are increasingly becoming adopted by the community, their current applications in network security are discussed. Finally, we highlight several research gaps on enterprise network security to inspire future research.Comment: Journal paper submitted to Elseive

    Temporally adaptive monitoring procedures with applications in enterprise cyber-security

    Get PDF
    Due to the perpetual threat of cyber-attacks, enterprises must employ and develop new methods of detection as attack vectors evolve and advance. Enterprise computer networks produce a large volume and variety of data including univariate data streams, time series and network graph streams. Motivated by cyber-security, this thesis develops adaptive monitoring tools for univariate and network graph data streams, however, they are not limited to this domain. In all domains, real data streams present several challenges for monitoring including trend, periodicity and change points. Streams often also have high volume and frequency. To deal with the non-stationarity in the data, the methods applied must be adaptive. Adaptability in the proposed procedures throughout the thesis is introduced using forgetting factors, weighting the data accordingly to recency. Secondly, methods applied must be computationally fast with a small or fixed computation burden and fixed storage requirements for timely processing. Throughout this thesis, sequential or sliding window approaches are employed to achieve this. The first part of the thesis is centred around univariate monitoring procedures. A sequential adaptive parameter estimator is proposed using a Bayesian framework. This procedure is then extended for multiple change point detection, where, unlike existing change point procedures, the proposed method is capable of detecting abrupt changes in the presence of trend. We additionally present a time series model which combines short-term and long-term behaviours of a series for improved anomaly detection. Unlike existing methods which primarily focus on point anomalies detection (extreme outliers), our method is capable of also detecting contextual anomalies, when the data deviates from persistent patterns of the series such as seasonality. Finally, a novel multi-type relational clustering methodology is proposed. As multiple relations exist between the different entities within a network (computers, users and ports), multiple network graphs can be generated. We propose simultaneously clustering over all graphs to produce a single clustering for each entity using Non-Negative Matrix Tri-Factorisation. Through simplifications, the proposed procedure is fast and scalable for large network graphs. Additionally, this methodology is extended for graph streams. This thesis provides an assortment of tools for enterprise network monitoring with a focus on adaptability and scalability making them suitable for intrusion detection and situational awareness.Open Acces

    Wide-Area Situation Awareness based on a Secure Interconnection between Cyber-Physical Control Systems

    Get PDF
    Posteriormente, examinamos e identificamos los requisitos especiales que limitan el diseño y la operación de una arquitectura de interoperabilidad segura para los SSC (particularmente los SCCF) del smart grid. Nos enfocamos en modelar requisitos no funcionales que dan forma a esta infraestructura, siguiendo la metodología NFR para extraer requisitos esenciales, técnicas para la satisfacción de los requisitos y métricas para nuestro modelo arquitectural. Estudiamos los servicios necesarios para la interoperabilidad segura de los SSC del SG revisando en profundidad los mecanismos de seguridad, desde los servicios básicos hasta los procedimientos avanzados capaces de hacer frente a las amenazas sofisticadas contra los sistemas de control, como son los sistemas de detección, protección y respuesta ante intrusiones. Nuestro análisis se divide en diferentes áreas: prevención, consciencia y reacción, y restauración; las cuales general un modelo de seguridad robusto para la protección de los sistemas críticos. Proporcionamos el diseño para un modelo arquitectural para la interoperabilidad segura y la interconexión de los SCCF del smart grid. Este escenario contempla la interconectividad de una federación de proveedores de energía del SG, que interactúan a través de la plataforma de interoperabilidad segura para gestionar y controlar sus infraestructuras de forma cooperativa. La plataforma tiene en cuenta las características inherentes y los nuevos servicios y tecnologías que acompañan al movimiento de la Industria 4.0. Por último, presentamos una prueba de concepto de nuestro modelo arquitectural, el cual ayuda a validar el diseño propuesto a través de experimentaciones. Creamos un conjunto de casos de validación que prueban algunas de las funcionalidades principales ofrecidas por la arquitectura diseñada para la interoperabilidad segura, proporcionando información sobre su rendimiento y capacidades.Las infraestructuras críticas (IICC) modernas son vastos sistemas altamente complejos, que precisan del uso de las tecnologías de la información para gestionar, controlar y monitorizar el funcionamiento de estas infraestructuras. Debido a sus funciones esenciales, la protección y seguridad de las infraestructuras críticas y, por tanto, de sus sistemas de control, se ha convertido en una tarea prioritaria para las diversas instituciones gubernamentales y académicas a nivel mundial. La interoperabilidad de las IICC, en especial de sus sistemas de control (SSC), se convierte en una característica clave para que estos sistemas sean capaces de coordinarse y realizar tareas de control y seguridad de forma cooperativa. El objetivo de esta tesis se centra, por tanto, en proporcionar herramientas para la interoperabilidad segura de los diferentes SSC, especialmente los sistemas de control ciber-físicos (SCCF), de forma que se potencie la intercomunicación y coordinación entre ellos para crear un entorno en el que las diversas infraestructuras puedan realizar tareas de control y seguridad cooperativas, creando una plataforma de interoperabilidad segura capaz de dar servicio a diversas IICC, en un entorno de consciencia situacional (del inglés situational awareness) de alto espectro o área (wide-area). Para ello, en primer lugar, revisamos las amenazas de carácter más sofisticado que amenazan la operación de los sistemas críticos, particularmente enfocándonos en los ciberataques camuflados (del inglés stealth) que amenazan los sistemas de control de infraestructuras críticas como el smart grid. Enfocamos nuestra investigación al análisis y comprensión de este nuevo tipo de ataques que aparece contra los sistemas críticos, y a las posibles contramedidas y herramientas para mitigar los efectos de estos ataques

    Advanced Threat Intelligence: Interpretation of Anomalous Behavior in Ubiquitous Kernel Processes

    Get PDF
    Targeted attacks on digital infrastructures are a rising threat against the confidentiality, integrity, and availability of both IT systems and sensitive data. With the emergence of advanced persistent threats (APTs), identifying and understanding such attacks has become an increasingly difficult task. Current signature-based systems are heavily reliant on fixed patterns that struggle with unknown or evasive applications, while behavior-based solutions usually leave most of the interpretative work to a human analyst. This thesis presents a multi-stage system able to detect and classify anomalous behavior within a user session by observing and analyzing ubiquitous kernel processes. Application candidates suitable for monitoring are initially selected through an adapted sentiment mining process using a score based on the log likelihood ratio (LLR). For transparent anomaly detection within a corpus of associated events, the author utilizes star structures, a bipartite representation designed to approximate the edit distance between graphs. Templates describing nominal behavior are generated automatically and are used for the computation of both an anomaly score and a report containing all deviating events. The extracted anomalies are classified using the Random Forest (RF) and Support Vector Machine (SVM) algorithms. Ultimately, the newly labeled patterns are mapped to a dedicated APT attacker–defender model that considers objectives, actions, actors, as well as assets, thereby bridging the gap between attack indicators and detailed threat semantics. This enables both risk assessment and decision support for mitigating targeted attacks. Results show that the prototype system is capable of identifying 99.8% of all star structure anomalies as benign or malicious. In multi-class scenarios that seek to associate each anomaly with a distinct attack pattern belonging to a particular APT stage we achieve a solid accuracy of 95.7%. Furthermore, we demonstrate that 88.3% of observed attacks could be identified by analyzing and classifying a single ubiquitous Windows process for a mere 10 seconds, thereby eliminating the necessity to monitor each and every (unknown) application running on a system. With its semantic take on threat detection and classification, the proposed system offers a formal as well as technical solution to an information security challenge of great significance.The financial support by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs, and the National Foundation for Research, Technology and Development is gratefully acknowledged

    VTAC: Virtual terrain assisted impact assessment for cyber attacks

    Get PDF
    Recently, there has been substantial research in the area of network security. Correlation of intrusion detection sensor alerts, vulnerability analysis, and threat projection are all being studied in hopes to relieve the workload that analysts have in monitoring their networks. Having an automated algorithm that can estimate the impact of cyber attacks on a network is another facet network analysts could use in defending their networks and gaining better overall situational awareness. Impact assessment involves determining the effect of a cyber attack on a network. Impact algorithms may consider items such as machine importance, connectivity, user accounts, known attacker capability, and similar machine configurations. Due to the increasing number of attacks, constantly changing vulnerabilities, and unknown attacker behavior, automating impact assessment is a non-trivial task. This work develops a virtual terrain that contains network and machine characteristics relevant to impact assessment. Once populated, this virtual terrain is used to perform impact assessment algorithms. The goal of this work is to investigate and propose an impact assessment system to assist network analysts in prioritizing attacks and analyzing overall network status. VTAC is tested with several scenarios over a network with a variety of configurations. Insights into the results of the scenarios, including how the network topologies and network asset configurations affect the impact analysis are discussed
    • …
    corecore