403 research outputs found

    Deep Predictive Coding Neural Network for RF Anomaly Detection in Wireless Networks

    Full text link
    Intrusion detection has become one of the most critical tasks in a wireless network to prevent service outages that can take long to fix. The sheer variety of anomalous events necessitates adopting cognitive anomaly detection methods instead of the traditional signature-based detection techniques. This paper proposes an anomaly detection methodology for wireless systems that is based on monitoring and analyzing radio frequency (RF) spectrum activities. Our detection technique leverages an existing solution for the video prediction problem, and uses it on image sequences generated from monitoring the wireless spectrum. The deep predictive coding network is trained with images corresponding to the normal behavior of the system, and whenever there is an anomaly, its detection is triggered by the deviation between the actual and predicted behavior. For our analysis, we use the images generated from the time-frequency spectrograms and spectral correlation functions of the received RF signal. We test our technique on a dataset which contains anomalies such as jamming, chirping of transmitters, spectrum hijacking, and node failure, and evaluate its performance using standard classifier metrics: detection ratio, and false alarm rate. Simulation results demonstrate that the proposed methodology effectively detects many unforeseen anomalous events in real time. We discuss the applications, which encompass industrial IoT, autonomous vehicle control and mission-critical communications services.Comment: 7 pages, 7 figures, Communications Workshop ICC'1

    Jammer detection in M-QAM-OFDM by learning a dynamic Bayesian model for the cognitive radio

    Get PDF
    Communication and information field has witnessed recent developments in wireless technologies. Among such emerging technologies, the Internet of Things (IoT) is gaining a lot of popularity and attention in almost every field. IoT devices have to be equipped with cognitive capabilities to enhance spectrum utilization by sensing and learning the surrounding environment. IoT network is susceptible to the various jamming attacks which interrupt users communication. In this paper, two systems (Single and Bank-Parallel) have been proposed to implement a Dynamic Bayesian Network (DBN) Model to detect jammer in Orthogonal Frequency Division Multiplexing (OFDM) sub-carriers modulated with different M-QAM. The comparison of the two systems has been evaluated by simulation results after analyzing the effect of self-organizing map's (SOM) size on the performance of the proposed systems in relation to M-QAM modulation

    Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey

    Get PDF
    Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications.publishedVersio

    Machine Learning Tips and Tricks for Power Line Communications

    Get PDF
    4openopenTonello A.M.; Letizia N.A.; Righini D.; Marcuzzi F.Tonello, A. M.; Letizia, N. A.; Righini, D.; Marcuzzi, F

    An architecture to predict anomalies in industrial processes

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Data ScienceThe Internet of Things (IoT) and machine learning algorithms (ML) are enabling a revolutionary change in digitization in numerous areas, benefiting Industry 4.0 in particular. Predictive maintenance using machine learning models is being used to protect assets in industry. In this paper, an architecture for predicting anomalies in industrial processes was proposed in which SMEs can be guided in implementing an IIoT architecture for predictive maintenance (PdM). This research was conducted to understand what machine learning architectures and models are generally used by industry for PdM. An overview of the concepts of the Industrial Internet of Things (IIoT), machine learning (ML), and predictive maintenance (PdM) was provided, and through a systematic literature review, it was possible to understand their applications and which technologies enable their use. The survey revealed that PdM applications are increasingly common and that there are many studies on the development of new ML techniques. The survey conducted confirmed the usefulness of the artifact and showed the need for an architecture to guide the implementation of PdM. This research can be a contribution for SMEs, allowing them to become more efficient and reduce both production and maintenance costs in order to keep up with multinational companies
    • …
    corecore