1,160 research outputs found

    STWalk: Learning Trajectory Representations in Temporal Graphs

    Full text link
    Analyzing the temporal behavior of nodes in time-varying graphs is useful for many applications such as targeted advertising, community evolution and outlier detection. In this paper, we present a novel approach, STWalk, for learning trajectory representations of nodes in temporal graphs. The proposed framework makes use of structural properties of graphs at current and previous time-steps to learn effective node trajectory representations. STWalk performs random walks on a graph at a given time step (called space-walk) as well as on graphs from past time-steps (called time-walk) to capture the spatio-temporal behavior of nodes. We propose two variants of STWalk to learn trajectory representations. In one algorithm, we perform space-walk and time-walk as part of a single step. In the other variant, we perform space-walk and time-walk separately and combine the learned representations to get the final trajectory embedding. Extensive experiments on three real-world temporal graph datasets validate the effectiveness of the learned representations when compared to three baseline methods. We also show the goodness of the learned trajectory embeddings for change point detection, as well as demonstrate that arithmetic operations on these trajectory representations yield interesting and interpretable results.Comment: 10 pages, 5 figures, 2 table

    Application of Evolutionary Network Concept in Structuring Mathematics Curriculum

    Get PDF
    Phylogenetic tree and in general, evolutionary network, has found its application well beyond the biological fields and has even percolated into recent high demanding areas, such as data mining and social media chain reactions. An extensive survey of its current applications are presented here. An attempt has been made to apply the very concept in the mathematics course curriculum inside a degree program. Various features of the tree structure are identified within the curriculum network. To highlight various key components and to enhance the visual effect, several diagrams are presented. The combined effect of these diagram provides a sense of the entire curriculum tree structure. The current study can be used as a potential tool for effective student advisement, student placement within the curriculum, efficient resource allocation, etc. Future work may encompass detailing and implementing these applications

    Data Deluge in Astrophysics: Photometric Redshifts as a Template Use Case

    Get PDF
    Astronomy has entered the big data era and Machine Learning based methods have found widespread use in a large variety of astronomical applications. This is demonstrated by the recent huge increase in the number of publications making use of this new approach. The usage of machine learning methods, however is still far from trivial and many problems still need to be solved. Using the evaluation of photometric redshifts as a case study, we outline the main problems and some ongoing efforts to solve them.Comment: 13 pages, 3 figures, Springer's Communications in Computer and Information Science (CCIS), Vol. 82

    Understanding Graph Data Through Deep Learning Lens

    Get PDF
    Deep neural network models have established themselves as an unparalleled force in the domains of vision, speech and text processing applications in recent years. However, graphs have formed a significant component of data analytics including applications in Internet of Things, social networks, pharmaceuticals and bioinformatics. An important characteristic of these deep learning techniques is their ability to learn the important features which are necessary to excel at a given task, unlike traditional machine learning algorithms which are dependent on handcrafted features. However, there have been comparatively fewer e�orts in deep learning to directly work on graph inputs. Various real-world problems can be easily solved by posing them as a graph analysis problem. Considering the direct impact of the success of graph analysis on business outcomes, importance of studying these complex graph data has increased exponentially over the years. In this thesis, we address three contributions towards understanding graph data: (i) The first contribution seeks to find anomalies in graphs using graphical models; (ii) The second contribution uses deep learning with spatio-temporal random walks to learn representations of graph trajectories (paths) and shows great promise on standard graph datasets; and (iii) The third contribution seeks to propose a novel deep neural network that implicitly models attention to allow for interpretation of graph classification.

    Concept drift from 1980 to 2020: a comprehensive bibliometric analysis with future research insight

    Get PDF
    In nonstationary environments, high-dimensional data streams have been generated unceasingly where the underlying distribution of the training and target data may change over time. These drifts are labeled as concept drift in the literature. Learning from evolving data streams demands adaptive or evolving approaches to handle concept drifts, which is a brand-new research affair. In this effort, a wide-ranging comparative analysis of concept drift is represented to highlight state-of-the-art approaches, embracing the last four decades, namely from 1980 to 2020. Considering the scope and discipline; the core collection of the Web of Science database is regarded as the basis of this study, and 1,564 publications related to concept drift are retrieved. As a result of the classification and feature analysis of valid literature data, the bibliometric indicators are revealed at the levels of countries/regions, institutions, and authors. The overall analyses, respecting the publications, citations, and cooperation of networks, are unveiled not only the highly authoritative publications but also the most prolific institutions, influential authors, dynamic networks, etc. Furthermore, deep analyses including text mining such as; the burst detection analysis, co-occurrence analysis, timeline view analysis, and bibliographic coupling analysis are conducted to disclose the current challenges and future research directions. This paper contributes as a remarkable reference for invaluable further research of concept drift, which enlightens the emerging/trend topics, and the possible research directions with several graphs, visualized by using the VOS viewer and Cite Space software

    Mining Time-aware Actor-level Evolution Similarity for Link Prediction in Dynamic Network

    Get PDF
    Topological evolution over time in a dynamic network triggers both the addition and deletion of actors and the links among them. A dynamic network can be represented as a time series of network snapshots where each snapshot represents the state of the network over an interval of time (for example, a minute, hour or day). The duration of each snapshot denotes the temporal scale/sliding window of the dynamic network and all the links within the duration of the window are aggregated together irrespective of their order in time. The inherent trade-off in selecting the timescale in analysing dynamic networks is that choosing a short temporal window may lead to chaotic changes in network topology and measures (for example, the actors’ centrality measures and the average path length); however, choosing a long window may compromise the study and the investigation of network dynamics. Therefore, to facilitate the analysis and understand different patterns of actor-oriented evolutionary aspects, it is necessary to define an optimal window length (temporal duration) with which to sample a dynamic network. In addition to determining the optical temporal duration, another key task for understanding the dynamics of evolving networks is being able to predict the likelihood of future links among pairs of actors given the existing states of link structure at present time. This phenomenon is known as the link prediction problem in network science. Instead of considering a static state of a network where the associated topology does not change, dynamic link prediction attempts to predict emerging links by considering different types of historical/temporal information, for example the different types of temporal evolutions experienced by the actors in a dynamic network due to the topological evolution over time, known as actor dynamicities. Although there has been some success in developing various methodologies and metrics for the purpose of dynamic link prediction, mining actor-oriented evolutions to address this problem has received little attention from the research community. In addition to this, the existing methodologies were developed without considering the sampling window size of the dynamic network, even though the sampling duration has a large impact on mining the network dynamics of an evolutionary network. Therefore, although the principal focus of this thesis is link prediction in dynamic networks, the optimal sampling window determination was also considered
    corecore