9,367 research outputs found

    A Survey on the Security of Pervasive Online Social Networks (POSNs)

    Full text link
    Pervasive Online Social Networks (POSNs) are the extensions of Online Social Networks (OSNs) which facilitate connectivity irrespective of the domain and properties of users. POSNs have been accumulated with the convergence of a plethora of social networking platforms with a motivation of bridging their gap. Over the last decade, OSNs have visually perceived an altogether tremendous amount of advancement in terms of the number of users as well as technology enablers. A single OSN is the property of an organization, which ascertains smooth functioning of its accommodations for providing a quality experience to their users. However, with POSNs, multiple OSNs have coalesced through communities, circles, or only properties, which make service-provisioning tedious and arduous to sustain. Especially, challenges become rigorous when the focus is on the security perspective of cross-platform OSNs, which are an integral part of POSNs. Thus, it is of utmost paramountcy to highlight such a requirement and understand the current situation while discussing the available state-of-the-art. With the modernization of OSNs and convergence towards POSNs, it is compulsory to understand the impact and reach of current solutions for enhancing the security of users as well as associated services. This survey understands this requisite and fixates on different sets of studies presented over the last few years and surveys them for their applicability to POSNs...Comment: 39 Pages, 10 Figure

    Big Data Quality: A systematic literature review and future research directions

    Full text link
    One of the most significant problems of Big Data is to extract knowledge through the huge amount of data. The usefulness of the extracted information depends strongly on data quality. In addition to the importance, data quality has recently been taken into consideration by the big data community and there is not any comprehensive review conducted in this area. Therefore, the purpose of this study is to review and present the state of the art on the quality of big data research through a hierarchical framework. The dimensions of the proposed framework cover various aspects in the quality assessment of Big Data including 1) the processing types of big data, i.e. stream, batch, and hybrid, 2) the main task, and 3) the method used to conduct the task. We compare and critically review all of the studies reported during the last ten years through our proposed framework to identify which of the available data quality assessment methods have been successfully adopted by the big data community. Finally, we provide a critical discussion on the limitations of existing methods and offer suggestions on potential valuable research directions that can be taken in future research in this domain

    Survey on Incremental Approaches for Network Anomaly Detection

    Full text link
    As the communication industry has connected distant corners of the globe using advances in network technology, intruders or attackers have also increased attacks on networking infrastructure commensurately. System administrators can attempt to prevent such attacks using intrusion detection tools and systems. There are many commercially available signature-based Intrusion Detection Systems (IDSs). However, most IDSs lack the capability to detect novel or previously unknown attacks. A special type of IDSs, called Anomaly Detection Systems, develop models based on normal system or network behavior, with the goal of detecting both known and unknown attacks. Anomaly detection systems face many problems including high rate of false alarm, ability to work in online mode, and scalability. This paper presents a selective survey of incremental approaches for detecting anomaly in normal system or network traffic. The technological trends, open problems, and challenges over anomaly detection using incremental approach are also discussed.Comment: 14 pages, 1 figure, 11 tables referred journal publicatio

    Neural Stochastic Block Model & Scalable Community-Based Graph Learning

    Full text link
    This paper proposes a novel scalable community-based neural framework for graph learning. The framework learns the graph topology through the task of community detection and link prediction by optimizing with our proposed joint SBM loss function, which results from a non-trivial adaptation of the likelihood function of the classic Stochastic Block Model (SBM). Compared with SBM, our framework is flexible, naturally allows soft labels and digestion of complex node attributes. The main goal is efficient valuation of complex graph data, therefore our design carefully aims at accommodating large data, and ensures there is a single forward pass for efficient evaluation. For large graph, it remains an open problem of how to efficiently leverage its underlying structure for various graph learning tasks. Previously it can be heavy work. With our community-based framework, this becomes less difficult and allows the task models to basically plug-in-and-play and perform joint training. We currently look into two particular applications, the graph alignment and the anomalous correlation detection, and discuss how to make use of our framework to tackle both problems. Extensive experiments are conducted to demonstrate the effectiveness of our approach. We also contributed tweaks of classic techniques which we find helpful for performance and scalability. For example, 1) the GAT+, an improved design of GAT (Graph Attention Network), the scaled-cosine similarity, and a unified implementation of the convolution/attention based and the random-walk based neural graph models

    Online Multivariate Anomaly Detection and Localization for High-dimensional Settings

    Full text link
    This paper considers the real-time detection of anomalies in high-dimensional systems. The goal is to detect anomalies quickly and accurately so that the appropriate countermeasures could be taken in time, before the system possibly gets harmed. We propose a sequential and multivariate anomaly detection method that scales well to high-dimensional datasets. The proposed method follows a nonparametric, i.e., data-driven, and semi-supervised approach, i.e., trains only on nominal data. Thus, it is applicable to a wide range of applications and data types. Thanks to its multivariate nature, it can quickly and accurately detect challenging anomalies, such as changes in the correlation structure and stealth low-rate cyberattacks. Its asymptotic optimality and computational complexity are comprehensively analyzed. In conjunction with the detection method, an effective technique for localizing the anomalous data dimensions is also proposed. We further extend the proposed detection and localization methods to a supervised setup where an additional anomaly dataset is available, and combine the proposed semi-supervised and supervised algorithms to obtain an online learning algorithm under the semi-supervised framework. The practical use of proposed algorithms are demonstrated in DDoS attack mitigation, and their performances are evaluated using a real IoT-botnet dataset and simulations.Comment: 16 pages, LaTeX; references adde

    A Survey on Social Media Anomaly Detection

    Full text link
    Social media anomaly detection is of critical importance to prevent malicious activities such as bullying, terrorist attack planning, and fraud information dissemination. With the recent popularity of social media, new types of anomalous behaviors arise, causing concerns from various parties. While a large amount of work have been dedicated to traditional anomaly detection problems, we observe a surge of research interests in the new realm of social media anomaly detection. In this paper, we present a survey on existing approaches to address this problem. We focus on the new type of anomalous phenomena in the social media and review the recent developed techniques to detect those special types of anomalies. We provide a general overview of the problem domain, common formulations, existing methodologies and potential directions. With this work, we hope to call out the attention from the research community on this challenging problem and open up new directions that we can contribute in the future.Comment: 23 page

    Should I Raise The Red Flag? A comprehensive survey of anomaly scoring methods toward mitigating false alarms

    Full text link
    Nowadays, advanced intrusion detection systems (IDSs) rely on a combination of anomaly detection and signature-based methods. An IDS gathers observations, analyzes behavioral patterns, and reports suspicious events for further investigation. A notorious issue anomaly detection systems (ADSs) and IDSs face is the possibility of high false alarms, which even state-of-the-art systems have not overcome. This is especially a problem with large and complex systems. The number of non-critical alarms can easily overwhelm administrators and increase the likelihood of ignoring future alerts. Mitigation strategies thus aim to avoid raising `too many' false alarms without missing potentially dangerous situations. There are two major categories of false alarm-mitigation strategies: (1) methods that are customized to enhance the quality of anomaly scoring; (2) approaches acting as filtering methods in contexts that aim to decrease false alarm rates. These methods have been widely utilized by many scholars. Herein, we review and compare the existing techniques for false alarm mitigation in ADSs. We also examine the use of promising techniques in signature-based IDS and other relevant contexts, such as commercial security information and event management tools, which are promising for ADSs. We conclude by highlighting promising directions for future research.Comment: arXiv admin note: text overlap with arXiv:1802.04431, arXiv:1503.01158 by other author

    Universal Anomaly Detection: Algorithms and Applications

    Full text link
    Modern computer threats are far more complicated than those seen in the past. They are constantly evolving, altering their appearance, perpetually changing disguise. Under such circumstances, detecting known threats, a fortiori zero-day attacks, requires new tools, which are able to capture the essence of their behavior, rather than some fixed signatures. In this work, we propose novel universal anomaly detection algorithms, which are able to learn the normal behavior of systems and alert for abnormalities, without any prior knowledge on the system model, nor any knowledge on the characteristics of the attack. The suggested method utilizes the Lempel-Ziv universal compression algorithm in order to optimally give probability assignments for normal behavior (during learning), then estimate the likelihood of new data (during operation) and classify it accordingly. The suggested technique is generic, and can be applied to different scenarios. Indeed, we apply it to key problems in computer security. The first is detecting Botnets Command and Control (C&C) channels. A Botnet is a logical network of compromised machines which are remotely controlled by an attacker using a C&C infrastructure, in order to perform malicious activities. We derive a detection algorithm based on timing data, which can be collected without deep inspection, from open as well as encrypted flows. We evaluate the algorithm on real-world network traces, showing how a universal, low complexity C&C identification system can be built, with high detection rates and low false-alarm probabilities. Further applications include malicious tools detection via system calls monitoring and data leakage identification

    A short review on Applications of Deep learning for Cyber security

    Full text link
    Deep learning is an advanced model of traditional machine learning. This has the capability to extract optimal feature representation from raw input samples. This has been applied towards various use cases in cyber security such as intrusion detection, malware classification, android malware detection, spam and phishing detection and binary analysis. This paper outlines the survey of all the works related to deep learning based solutions for various cyber security use cases. Keywords: Deep learning, intrusion detection, malware detection, Android malware detection, spam & phishing detection, traffic analysis, binary analysis.Comment: 15 page

    Detecting Irregular Patterns in IoT Streaming Data for Fall Detection

    Full text link
    Detecting patterns in real time streaming data has been an interesting and challenging data analytics problem. With the proliferation of a variety of sensor devices, real-time analytics of data from the Internet of Things (IoT) to learn regular and irregular patterns has become an important machine learning problem to enable predictive analytics for automated notification and decision support. In this work, we address the problem of learning an irregular human activity pattern, fall, from streaming IoT data from wearable sensors. We present a deep neural network model for detecting fall based on accelerometer data giving 98.75 percent accuracy using an online physical activity monitoring dataset called "MobiAct", which was published by Vavoulas et al. The initial model was developed using IBM Watson studio and then later transferred and deployed on IBM Cloud with the streaming analytics service supported by IBM Streams for monitoring real-time IoT data. We also present the systems architecture of the real-time fall detection framework that we intend to use with mbientlabs wearable health monitoring sensors for real time patient monitoring at retirement homes or rehabilitation clinics.Comment: 7 page
    • …
    corecore