9,999 research outputs found

    Anomaly Detection Based on Indicators Aggregation

    Full text link
    Automatic anomaly detection is a major issue in various areas. Beyond mere detection, the identification of the source of the problem that produced the anomaly is also essential. This is particularly the case in aircraft engine health monitoring where detecting early signs of failure (anomalies) and helping the engine owner to implement efficiently the adapted maintenance operations (fixing the source of the anomaly) are of crucial importance to reduce the costs attached to unscheduled maintenance. This paper introduces a general methodology that aims at classifying monitoring signals into normal ones and several classes of abnormal ones. The main idea is to leverage expert knowledge by generating a very large number of binary indicators. Each indicator corresponds to a fully parametrized anomaly detector built from parametric anomaly scores designed by experts. A feature selection method is used to keep only the most discriminant indicators which are used at inputs of a Naive Bayes classifier. This give an interpretable classifier based on interpretable anomaly detectors whose parameters have been optimized indirectly by the selection process. The proposed methodology is evaluated on simulated data designed to reproduce some of the anomaly types observed in real world engines.Comment: International Joint Conference on Neural Networks (IJCNN 2014), Beijing : China (2014). arXiv admin note: substantial text overlap with arXiv:1407.088

    Anomaly Detection Based on Aggregation of Indicators

    Full text link
    Automatic anomaly detection is a major issue in various areas. Beyond mere detection, the identification of the origin of the problem that produced the anomaly is also essential. This paper introduces a general methodology that can assist human operators who aim at classifying monitoring signals. The main idea is to leverage expert knowledge by generating a very large number of indicators. A feature selection method is used to keep only the most discriminant indicators which are used as inputs of a Naive Bayes classifier. The parameters of the classifier have been optimized indirectly by the selection process. Simulated data designed to reproduce some of the anomaly types observed in real world engines.Comment: 23rd annual Belgian-Dutch Conference on Machine Learning (Benelearn 2014), Bruxelles : Belgium (2014

    A Methodology for the Diagnostic of Aircraft Engine Based on Indicators Aggregation

    Full text link
    Aircraft engine manufacturers collect large amount of engine related data during flights. These data are used to detect anomalies in the engines in order to help companies optimize their maintenance costs. This article introduces and studies a generic methodology that allows one to build automatic early signs of anomaly detection in a way that is understandable by human operators who make the final maintenance decision. The main idea of the method is to generate a very large number of binary indicators based on parametric anomaly scores designed by experts, complemented by simple aggregations of those scores. The best indicators are selected via a classical forward scheme, leading to a much reduced number of indicators that are tuned to a data set. We illustrate the interest of the method on simulated data which contain realistic early signs of anomalies.Comment: Proceedings of the 14th Industrial Conference, ICDM 2014, St. Petersburg : Russian Federation (2014

    Interpretable Aircraft Engine Diagnostic via Expert Indicator Aggregation

    Full text link
    Detecting early signs of failures (anomalies) in complex systems is one of the main goal of preventive maintenance. It allows in particular to avoid actual failures by (re)scheduling maintenance operations in a way that optimizes maintenance costs. Aircraft engine health monitoring is one representative example of a field in which anomaly detection is crucial. Manufacturers collect large amount of engine related data during flights which are used, among other applications, to detect anomalies. This article introduces and studies a generic methodology that allows one to build automatic early signs of anomaly detection in a way that builds upon human expertise and that remains understandable by human operators who make the final maintenance decision. The main idea of the method is to generate a very large number of binary indicators based on parametric anomaly scores designed by experts, complemented by simple aggregations of those scores. A feature selection method is used to keep only the most discriminant indicators which are used as inputs of a Naive Bayes classifier. This give an interpretable classifier based on interpretable anomaly detectors whose parameters have been optimized indirectly by the selection process. The proposed methodology is evaluated on simulated data designed to reproduce some of the anomaly types observed in real world engines.Comment: arXiv admin note: substantial text overlap with arXiv:1408.6214, arXiv:1409.4747, arXiv:1407.088

    A stigmergy-based analysis of city hotspots to discover trends and anomalies in urban transportation usage

    Full text link
    A key aspect of a sustainable urban transportation system is the effectiveness of transportation policies. To be effective, a policy has to consider a broad range of elements, such as pollution emission, traffic flow, and human mobility. Due to the complexity and variability of these elements in the urban area, to produce effective policies remains a very challenging task. With the introduction of the smart city paradigm, a widely available amount of data can be generated in the urban spaces. Such data can be a fundamental source of knowledge to improve policies because they can reflect the sustainability issues underlying the city. In this context, we propose an approach to exploit urban positioning data based on stigmergy, a bio-inspired mechanism providing scalar and temporal aggregation of samples. By employing stigmergy, samples in proximity with each other are aggregated into a functional structure called trail. The trail summarizes relevant dynamics in data and allows matching them, providing a measure of their similarity. Moreover, this mechanism can be specialized to unfold specific dynamics. Specifically, we identify high-density urban areas (i.e hotspots), analyze their activity over time, and unfold anomalies. Moreover, by matching activity patterns, a continuous measure of the dissimilarity with respect to the typical activity pattern is provided. This measure can be used by policy makers to evaluate the effect of policies and change them dynamically. As a case study, we analyze taxi trip data gathered in Manhattan from 2013 to 2015.Comment: Preprin

    Rule-based system to detect energy efficiency anomalies in smart buildings, a data mining approach

    Get PDF
    The rapidly growing world energy use already has concerns over the exhaustion of energy resources andheavy environmental impacts. As a result of these concerns, a trend of green and smart cities has beenincreasing. To respond to this increasing trend of smart cities with buildings every time more complex,in this paper we have proposed a new method to solve energy inefficiencies detection problem in smartbuildings. This solution is based on a rule-based system developed through data mining techniques andapplying the knowledge of energy efficiency experts. A set of useful energy efficiency indicators is alsoproposed to detect anomalies. The data mining system is developed through the knowledge extracted bya full set of building sensors. So, the results of this process provide a set of rules that are used as a partof a decision support system for the optimisation of energy consumption and the detection of anomaliesin smart buildings.Comisión Europea FP7-28522
    corecore