363 research outputs found

    Anomaly detection and compensation for hyperspectral imagery

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 153-158).Hyperspectral sensors observe hundreds or thousands of narrow contiguous spectral bands. The use of hyperspectral imagery for remote sensing applications is new and promising, yet the characterization and analysis of such data by exploiting both spectral and spatial information have not been extensively investigated thus far. A generic methodology is presented for detecting and compensating anomalies from hyperspectral imagery, taking advantage of all information available -- spectral and spatial correlation and any a priori knowledge about the anomalies. An anomaly is generally defined as an undesired spatial and spectral feature statistically different from its surrounding background. Principal component analysis (PCA) and the Iterative Order and Noise (ION) estimation algorithm provide valuable tools to characterize signals and reduce noise. Various methodologies are also addressed to cope with nonlinearities in the system without much computational burden. An anomaly compensation technique is applied to specific problems that exhibit different stochastic models for an anomaly and its performance is evaluated.(cont.) Hyperspectral anomalies dealt with in this thesis are (1) cloud impact in hyperspectral radiance fields, (2) noisy channels and (3) scan-line miscalibration. Estimation of the cloud impact using the proposed algorithm is especially successful and comparable to an alternative physics-based algorithm. Noisy channels and miscalibrated scan-lines are also fairly well compensated or removed using the proposed algorithm.by Choongyeun Cho.Ph.D

    Ballistic Flash Characterization: Penetration and Back-face Flash

    Get PDF
    The Air Force is extremely concerned with the safety of its people, especially those who are flying aircraft. Aircrew members flying combat missions are concerned with the chance that a fragment from an exploding threat device may penetrate into the airframe to possibly ignite a fire onboard the aircraft. One concern for vulnerability revolves around a flash that may occur when a projectile strikes and penetrates an aircraft\u27s fuselage. When certain fired rounds strike the airframe, they break into fragments called spall. Spall and other fragmentation from an impact often gain enough thermal energy to oxidize the materials involved. This oxidation causes a flash. To help negate these incidents, analysts must be able to predict the flash that can occur when a projectile strikes an aircraft. This research directly continues AFIT work for the 46th Test Group, Survivability Analysis Flight, by examining models to predict the likelihood of penetration of a fragment fired at a target. Empirical live-fire fragment test data are used to create an empirical model of a flash event. The resulting model provides an initial back-face flash modeling capability that can be implemented in joint survivability analysis models

    Towards the Mitigation of Correlation Effects in the Analysis of Hyperspectral Imagery with Extension to Robust Parameter Design

    Get PDF
    Standard anomaly detectors and classifiers assume data to be uncorrelated and homogeneous, which is not inherent in Hyperspectral Imagery (HSI). To address the detection difficulty, a new method termed Iterative Linear RX (ILRX) uses a line of pixels which shows an advantage over RX, in that it mitigates some of the effects of correlation due to spatial proximity; while the iterative adaptation from Iterative Linear RX (IRX) simultaneously eliminates outliers. In this research, the application of classification algorithms using anomaly detectors to remove potential anomalies from mean vector and covariance matrix estimates and addressing non-homogeneity through cluster analysis, both of which are often ignored when detecting or classifying anomalies, are shown to improve algorithm performance. Global anomaly detectors require the user to provide various parameters to analyze an image. These user-defined settings can be thought of as control variables and certain properties of the imagery can be employed as noise variables. The presence of these separate factors suggests the use of Robust Parameter Design (RPD) to locate optimal settings for an algorithm. This research extends the standard RPD model to include three factor interactions. These new models are then applied to the Autonomous Global Anomaly Detector (AutoGAD) to demonstrate improved setting combinations

    Optimal Spectral Domain Selection for Maximizing Archaeological Signatures: Italy Case Studies

    Get PDF
    Different landscape elements, including archaeological remains, can be automatically classified when their spectral characteristics are different, but major difficulties occur when extracting and classifying archaeological spectral features, as archaeological remains do not have unique shape or spectral characteristics. The spectral anomaly characteristics due to buried remains depend strongly on vegetation cover and/or soil types, which can make feature extraction more complicated. For crop areas, such as the test sites selected for this study, soil and moisture changes within near-surface archaeological deposits can influence surface vegetation patterns creating spectral anomalies of various kinds. In this context, this paper analyzes the usefulness of hyperspectral imagery, in the 0.4 to 12.8 Ī¼m spectral region, to identify the optimal spectral range for archaeological prospection as a function of the dominant land cover. MIVIS airborne hyperspectral imagery acquired in five different archaeological areas located in Italy has been used. Within these archaeological areas, 97 test sites with homogenous land cover and characterized by a statistically significant number of pixels related to the buried remains have been selected. The archaeological detection potential for all MIVIS bands has been assessed by applying a Separability Index on each spectral anomaly-background system of the test sites. A scatterplot analysis of the SI values vs. the dominant land cover fractional abundances, as retrieved by spectral mixture analysis, was performed to derive the optimal spectral ranges maximizing the archaeological detection. This work demonstrates that whenever we know the dominant land cover fractional abundances in archaeological sites, we can a priori select the optimal spectral range to improve the efficiency of archaeological observations performed by remote sensing data

    Hyperspectral and Hypertemporal Longwave Infrared Data Characterization

    Get PDF
    The Army Research Lab conducted a persistent imaging experiment called the Spectral and Polarimetric Imagery Collection Experiment (SPICE) in 2012 and 2013 which focused on collecting and exploiting long wave infrared hyperspectral and polarimetric imagery. A part of this dataset was made for public release for research and development purposes. This thesis investigated the hyperspectral portion of this released dataset through data characterization and scene characterization of man-made and natural objects. First, the data were contrasted with MODerate resolution atmospheric TRANsmission (MODTRAN) results and found to be comparable. Instrument noise was characterized using an in-scene black panel, and was found to be comparable with the sensor manufacturer\u27s specication. The temporal and spatial variation of certain objects in the scene were characterized. Temporal target detection was conducted on man-made objects in the scene using three target detection algorithms: spectral angle mapper (SAM), spectral matched lter (SMF) and adaptive coherence/cosine estimator (ACE). SMF produced the best results for detecting the targets when the training and testing data originated from different time periods, with a time index percentage result of 52.9%. Unsupervised and supervised classication were conducted using spectral and temporal target signatures. Temporal target signatures produced better visual classication than spectral target signature for unsupervised classication. Supervised classication yielded better results using the spectral target signatures, with a highest weighted accuracy of 99% for 7-class reference image. Four emissivity retrieval algorithms were applied on this dataset. However, the retrieved emissivities from all four methods did not represent true material emissivity and could not be used for analysis. This spectrally and temporally rich dataset enabled to conduct analysis that was not possible with other data collections. Regarding future work, applying noise-reduction techniques before applying temperature-emissivity retrieval algorithms may produce more realistic emissivity values, which could be used for target detection and material identification

    Matched filter stochastic background characterization for hyperspectral target detection

    Get PDF
    Algorithms exploiting hyperspectral imagery for target detection have continually evolved to provide improved detection results. Adaptive matched filters, which may be derived in many different scientific fields, can be used to locate spectral targets by modeling scene background as either structured geometric) with a set of endmembers (basis vectors) or as unstructured stochastic) with a covariance matrix. In unstructured background research, various methods of calculating the background covariance matrix have been developed, each involving either the removal of target signatures from the background model or the segmenting of image data into spatial or spectral subsets. The objective of these methods is to derive a background which matches the source of mixture interference for the detection of sub pixel targets, or matches the source of false alarms in the scene for the detection of fully resolved targets. In addition, these techniques increase the multivariate normality of the data from which the background is characterized, thus increasing adherence to the normality assumption inherent in the matched filter and ultimately improving target detection results. Such techniques for improved background characterization are widely practiced but not well documented or compared. This thesis will establish a strong theoretical foundation, describing the necessary preprocessing of hyperspectral imagery, deriving the spectral matched filter, and capturing current methods of unstructured background characterization. The extensive experimentation will allow for a comparative evaluation of several current unstructured background characterization methods as well as some new methods which improve stochastic modeling of the background. The results will show that consistent improvements over the scene-wide statistics can be achieved through spatial or spectral subsetting, and analysis of the results provides insight into the tradespaces of matching the interference, background multivariate normality and target exclusion for these techniques
    • ā€¦
    corecore