301 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Leveraging Machine Learning for Network Intrusion Detection in Social Internet Of Things (SIoT) Systems

    Get PDF
    This research investigates the application of machine learning models for network intrusion detection in the context of Social Internet of Things (SIoT) systems. We evaluate Convolutional Neural Network with Generative Adversarial Network (CNN+GAN), Generative Adversarial Network (GAN), and Logistic Regression models using the CIC IoT Dataset 2023. CNN+GAN emerges as a promising approach, exhibiting superior performance in accurately identifying diverse intrusion types. Our study emphasizes the significance of advanced machine learning techniques in enhancing SIoT security by effectively detecting anomalous behaviours within socially interconnected environments. The findings provide practical insights for selecting suitable intrusion detection methods and highlight the need for ongoing research to address evolving intrusion scenarios and vulnerabilities in SIoT ecosystems

    Performance evaluation of botnet detection using machine learning techniques

    Get PDF
    Cybersecurity is seriously threatened by Botnets, which are controlled networks of compromised computers. The evolving techniques used by botnet operators make it difficult for traditional methods of botnet identification to stay up. Machine learning has become increasingly effective in recent years as a means of identifying and reducing these hazards. The CTU-13 dataset, a frequently used dataset in the field of cybersecurity, is used in this study to offer a machine learning-based method for botnet detection. The suggested methodology makes use of the CTU-13, which is made up of actual network traffic data that was recorded in a network environment that had been attacked by a botnet. The dataset is used to train a variety of machine learning algorithms to categorize network traffic as botnet-related/benign, including decision tree, regression model, naïve Bayes, and neural network model. We employ a number of criteria, such as accuracy, precision, and sensitivity, to measure how well each model performs in categorizing both known and unidentified botnet traffic patterns. Results from experiments show how well the machine learning based approach detects botnet with accuracy. It is potential for use in actual world is demonstrated by the suggested system’s high detection rates and low false positive rates
    • …
    corecore