96 research outputs found

    Managing Distributed Cloud Applications and Infrastructure

    Get PDF
    The emergence of the Internet of Things (IoT), combined with greater heterogeneity not only online in cloud computing architectures but across the cloud-to-edge continuum, is introducing new challenges for managing applications and infrastructure across this continuum. The scale and complexity is simply so complex that it is no longer realistic for IT teams to manually foresee the potential issues and manage the dynamism and dependencies across an increasing inter-dependent chain of service provision. This Open Access Pivot explores these challenges and offers a solution for the intelligent and reliable management of physical infrastructure and the optimal placement of applications for the provision of services on distributed clouds. This book provides a conceptual reference model for reliable capacity provisioning for distributed clouds and discusses how data analytics and machine learning, application and infrastructure optimization, and simulation can deliver quality of service requirements cost-efficiently in this complex feature space. These are illustrated through a series of case studies in cloud computing, telecommunications, big data analytics, and smart cities

    Managing Distributed Cloud Applications and Infrastructure

    Get PDF
    The emergence of the Internet of Things (IoT), combined with greater heterogeneity not only online in cloud computing architectures but across the cloud-to-edge continuum, is introducing new challenges for managing applications and infrastructure across this continuum. The scale and complexity is simply so complex that it is no longer realistic for IT teams to manually foresee the potential issues and manage the dynamism and dependencies across an increasing inter-dependent chain of service provision. This Open Access Pivot explores these challenges and offers a solution for the intelligent and reliable management of physical infrastructure and the optimal placement of applications for the provision of services on distributed clouds. This book provides a conceptual reference model for reliable capacity provisioning for distributed clouds and discusses how data analytics and machine learning, application and infrastructure optimization, and simulation can deliver quality of service requirements cost-efficiently in this complex feature space. These are illustrated through a series of case studies in cloud computing, telecommunications, big data analytics, and smart cities

    A Survey on graph neural networks for microservice-based cloud applications

    Get PDF
    Graph neural networks (GNNs) have achieved great success in many research areas ranging from traffic to computer vision. With increased interest in cloud-native applications, GNNs are increasingly being investigated to address various challenges in microservice architecture from prototype design to large-scale service deployment. To appreciate the big picture of this emerging trend, we provide a comprehensive review of recent studies leveraging GNNs for microservice-based applications. To begin, we identify the key areas in which GNNs are applied, and then we review in detail how GNNs can be designed to address the challenges in specific areas found in the literature. Finally, we outline potential research directions where GNN-based solutions can be further applied. Our research shows the popularity of leveraging convolutional graph neural networks (ConGNNs) for microservice-based applications in the current design of cloud systems and the emerging area of adopting spatio-temporal graph neural networks (STGNNs) and dynamic graph neural networks (DGNNs) for more advanced studie

    Global monitoring of ionospheric weather by GIRO and GNSS data fusion

    Get PDF
    Prompt and accurate imaging of the ionosphere is essential to space weather services, given a broad spectrum of applications that rely on ionospherically propagating radio signals. As the 3D spatial extent of the ionosphere is vast and covered only fragmentarily, data fusion is a strong candidate for solving imaging tasks. Data fusion has been used to blend models and observations for the integrated and consistent views of geosystems. In space weather scenarios, low latency of the sensor data availability is one of the strongest requirements that limits the selection of potential datasets for fusion. Since remote plasma sensing instrumentation for ionospheric weather is complex, scarce, and prone to unavoidable data noise, conventional 3D-var assimilative schemas are not optimal. We describe a novel substantially 4D data fusion service based on near-real-time data feeds from Global Ionosphere Radio Observatory (GIRO) and Global Navigation Satellite System (GNSS) called GAMBIT (Global Assimilative Model of the Bottomside Ionosphere with Topside estimate). GAMBIT operates with a few-minute latency, and it releases, among other data products, the anomaly maps of the effective slab thickness (EST) obtained by fusing GIRO and GNSS data. The anomaly EST mapping aids understanding of the vertical plasma restructuring during disturbed conditionsPeer ReviewedPostprint (published version

    CyberSpec: Intelligent Behavioral Fingerprinting to Detect Attacks on Crowdsensing Spectrum Sensors

    Full text link
    Integrated sensing and communication (ISAC) is a novel paradigm using crowdsensing spectrum sensors to help with the management of spectrum scarcity. However, well-known vulnerabilities of resource-constrained spectrum sensors and the possibility of being manipulated by users with physical access complicate their protection against spectrum sensing data falsification (SSDF) attacks. Most recent literature suggests using behavioral fingerprinting and Machine/Deep Learning (ML/DL) for improving similar cybersecurity issues. Nevertheless, the applicability of these techniques in resource-constrained devices, the impact of attacks affecting spectrum data integrity, and the performance and scalability of models suitable for heterogeneous sensors types are still open challenges. To improve limitations, this work presents seven SSDF attacks affecting spectrum sensors and introduces CyberSpec, an ML/DL-oriented framework using device behavioral fingerprinting to detect anomalies produced by SSDF attacks affecting resource-constrained spectrum sensors. CyberSpec has been implemented and validated in ElectroSense, a real crowdsensing RF monitoring platform where several configurations of the proposed SSDF attacks have been executed in different sensors. A pool of experiments with different unsupervised ML/DL-based models has demonstrated the suitability of CyberSpec detecting the previous attacks within an acceptable timeframe

    Self-Adaptation in Industry: A Survey

    Full text link
    Computing systems form the backbone of many areas in our society, from manufacturing to traffic control, healthcare, and financial systems. When software plays a vital role in the design, construction, and operation, these systems are referred as software-intensive systems. Self-adaptation equips a software-intensive system with a feedback loop that either automates tasks that otherwise need to be performed by human operators or deals with uncertain conditions. Such feedback loops have found their way to a variety of practical applications; typical examples are an elastic cloud to adapt computing resources and automated server management to respond quickly to business needs. To gain insight into the motivations for applying self-adaptation in practice, the problems solved using self-adaptation and how these problems are solved, and the difficulties and risks that industry faces in adopting self-adaptation, we performed a large-scale survey. We received 184 valid responses from practitioners spread over 21 countries. Based on the analysis of the survey data, we provide an empirically grounded overview of state-of-the-practice in the application of self-adaptation. From that, we derive insights for researchers to check their current research with industrial needs, and for practitioners to compare their current practice in applying self-adaptation. These insights also provide opportunities for the application of self-adaptation in practice and pave the way for future industry-research collaborations.Comment: 43 page
    corecore