230 research outputs found

    Document clustering based on firefly algorithm

    Get PDF
    Document clustering is widely used in Information Retrieval however, existing clustering techniques suffer from local optima problem in determining the k number of clusters.Various efforts have been put to address such drawback and this includes the utilization of swarm-based algorithms such as particle swarm optimization and Ant Colony Optimization.This study explores the adaptation of another swarm algorithm which is the Firefly Algorithm (FA) in text clustering.We present two variants of FA; Weight- based Firefly Algorithm (WFA) and Weight-based Firefly Algorithm II (WFAII).The difference between the two algorithms is that the WFAII, includes a more restricted condition in determining members of a cluster.The proposed FA methods are later evaluated using the 20Newsgroups dataset.Experimental results on the quality of clustering between the two FA variants are presented and are later compared against the one produced by particle swarm optimization, K-means and the hybrid of FA and -K-means. The obtained results demonstrated that the WFAII outperformed the WFA, PSO, K-means and FA-Kmeans. This result indicates that a better clustering can be obtained once the exploitation of a search solution is improved

    Adaptive firefly algorithm for hierarchical text clustering

    Get PDF
    Text clustering is essentially used by search engines to increase the recall and precision in information retrieval. As search engine operates on Internet content that is constantly being updated, there is a need for a clustering algorithm that offers automatic grouping of items without prior knowledge on the collection. Existing clustering methods have problems in determining optimal number of clusters and producing compact clusters. In this research, an adaptive hierarchical text clustering algorithm is proposed based on Firefly Algorithm. The proposed Adaptive Firefly Algorithm (AFA) consists of three components: document clustering, cluster refining, and cluster merging. The first component introduces Weight-based Firefly Algorithm (WFA) that automatically identifies initial centers and their clusters for any given text collection. In order to refine the obtained clusters, a second algorithm, termed as Weight-based Firefly Algorithm with Relocate (WFAR), is proposed. Such an approach allows the relocation of a pre-assigned document into a newly created cluster. The third component, Weight-based Firefly Algorithm with Relocate and Merging (WFARM), aims to reduce the number of produced clusters by merging nonpure clusters into the pure ones. Experiments were conducted to compare the proposed algorithms against seven existing methods. The percentage of success in obtaining optimal number of clusters by AFA is 100% with purity and f-measure of 83% higher than the benchmarked methods. As for entropy measure, the AFA produced the lowest value (0.78) when compared to existing methods. The result indicates that Adaptive Firefly Algorithm can produce compact clusters. This research contributes to the text mining domain as hierarchical text clustering facilitates the indexing of documents and information retrieval processes

    A requirement model of an adaptive emergency evacuation center management

    Get PDF
    One of natural disasters that pose a rising danger and has highest percentage of occurrences is flood. Previous studies on flood disaster have provided solutions to deal with this situation. However, they do not consider a scenario where evacuation centers are drowned due to heavy flood and these studies do not provide any requirement models which can be used as reference guides to build similar systems. This study proposes a requirement model for a decision aid model for evacuation center management which is capable of providing smart solutions for relocation of victims to other evacuation centers when they were almost drowned. The methodology used in this study consists of five phases: requirement gathering, conceptual design, development, verification, and preparing thesis & articles for publication. This study has produced a requirement model of the proposed system that consists of a use case diagram, use case specifications, class diagrams, and sequence diagrams, which has been reviewed by the experts by using inspection method. The prototype has been evaluated through a functional testing. The proposed requirement model can be used as a reference model for developers in producing similar evacuation center management system

    Performance Evaluation of Network Anomaly Detection Systems

    Get PDF
    Nowadays, there is a huge and growing concern about security in information and communication technology (ICT) among the scientific community because any attack or anomaly in the network can greatly affect many domains such as national security, private data storage, social welfare, economic issues, and so on. Therefore, the anomaly detection domain is a broad research area, and many different techniques and approaches for this purpose have emerged through the years. Attacks, problems, and internal failures when not detected early may badly harm an entire Network system. Thus, this thesis presents an autonomous profile-based anomaly detection system based on the statistical method Principal Component Analysis (PCADS-AD). This approach creates a network profile called Digital Signature of Network Segment using Flow Analysis (DSNSF) that denotes the predicted normal behavior of a network traffic activity through historical data analysis. That digital signature is used as a threshold for volume anomaly detection to detect disparities in the normal traffic trend. The proposed system uses seven traffic flow attributes: Bits, Packets and Number of Flows to detect problems, and Source and Destination IP addresses and Ports, to provides the network administrator necessary information to solve them. Via evaluation techniques, addition of a different anomaly detection approach, and comparisons to other methods performed in this thesis using real network traffic data, results showed good traffic prediction by the DSNSF and encouraging false alarm generation and detection accuracy on the detection schema. The observed results seek to contribute to the advance of the state of the art in methods and strategies for anomaly detection that aim to surpass some challenges that emerge from the constant growth in complexity, speed and size of today’s large scale networks, also providing high-value results for a better detection in real time.Atualmente, existe uma enorme e crescente preocupação com segurança em tecnologia da informação e comunicação (TIC) entre a comunidade científica. Isto porque qualquer ataque ou anomalia na rede pode afetar a qualidade, interoperabilidade, disponibilidade, e integridade em muitos domínios, como segurança nacional, armazenamento de dados privados, bem-estar social, questões econômicas, e assim por diante. Portanto, a deteção de anomalias é uma ampla área de pesquisa, e muitas técnicas e abordagens diferentes para esse propósito surgiram ao longo dos anos. Ataques, problemas e falhas internas quando não detetados precocemente podem prejudicar gravemente todo um sistema de rede. Assim, esta Tese apresenta um sistema autônomo de deteção de anomalias baseado em perfil utilizando o método estatístico Análise de Componentes Principais (PCADS-AD). Essa abordagem cria um perfil de rede chamado Assinatura Digital do Segmento de Rede usando Análise de Fluxos (DSNSF) que denota o comportamento normal previsto de uma atividade de tráfego de rede por meio da análise de dados históricos. Essa assinatura digital é utilizada como um limiar para deteção de anomalia de volume e identificar disparidades na tendência de tráfego normal. O sistema proposto utiliza sete atributos de fluxo de tráfego: bits, pacotes e número de fluxos para detetar problemas, além de endereços IP e portas de origem e destino para fornecer ao administrador de rede as informações necessárias para resolvê-los. Por meio da utilização de métricas de avaliação, do acrescimento de uma abordagem de deteção distinta da proposta principal e comparações com outros métodos realizados nesta tese usando dados reais de tráfego de rede, os resultados mostraram boas previsões de tráfego pelo DSNSF e resultados encorajadores quanto a geração de alarmes falsos e precisão de deteção. Com os resultados observados nesta tese, este trabalho de doutoramento busca contribuir para o avanço do estado da arte em métodos e estratégias de deteção de anomalias, visando superar alguns desafios que emergem do constante crescimento em complexidade, velocidade e tamanho das redes de grande porte da atualidade, proporcionando também alta performance. Ainda, a baixa complexidade e agilidade do sistema proposto contribuem para que possa ser aplicado a deteção em tempo real

    A Review of the Family of Artificial Fish Swarm Algorithms: Recent Advances and Applications

    Full text link
    The Artificial Fish Swarm Algorithm (AFSA) is inspired by the ecological behaviors of fish schooling in nature, viz., the preying, swarming, following and random behaviors. Owing to a number of salient properties, which include flexibility, fast convergence, and insensitivity to the initial parameter settings, the family of AFSA has emerged as an effective Swarm Intelligence (SI) methodology that has been widely applied to solve real-world optimization problems. Since its introduction in 2002, many improved and hybrid AFSA models have been developed to tackle continuous, binary, and combinatorial optimization problems. This paper aims to present a concise review of the family of AFSA, encompassing the original ASFA and its improvements, continuous, binary, discrete, and hybrid models, as well as the associated applications. A comprehensive survey on the AFSA from its introduction to 2012 can be found in [1]. As such, we focus on a total of {\color{blue}123} articles published in high-quality journals since 2013. We also discuss possible AFSA enhancements and highlight future research directions for the family of AFSA-based models.Comment: 37 pages, 3 figure

    Application of Machine Learning Approaches in Intrusion Detection System

    Get PDF
    The rapid development of technology reveals several safety concerns for making life more straightforward. The advance of the Internet over the years has increased the number of attacks on the Internet. The IDS is one supporting layer for data protection. Intrusion Detection Systems (IDS) offers a healthy market climate and prevents misgivings in the network. Recently, IDS is used to recognize and distinguish safety risks using Machine Learning (ML). This paper proposed a comparative analysis of the different ML algorithms used in IDS and aims to identify intrusions with SVM, J48, and Naive Bayes. Intrusion is also classified. Work with the KDD-CUP data set, and their performance has checked with the Weak software. In comparison of techniques such as J48, SVM and Naïve Bayes showed that the accuracy of j48 is the higher one which was (99.96%)

    The application of firefly algorithm in an adaptive emergency evacuation centre management (AEECM) for dynamic relocation of flood victims

    Get PDF
    Flood evacuation centre is defined as a temporary location or area of people from disaster particularly flood as a rescue or precautionary measure. Gazetted evacuation centres are normally located at secure places which have small chances from being drowned by flood.However, due to extreme flood several evacuation centres in Kelantan were unexpectedly drowned.Currently, there is no study done on proposing a decision support aid to reallocate victims and resources of the evacuation centre when the situation getting worsens.Therefore, this study proposes a decision aid model to be utilized in realizing an adaptive emergency evacuation centre management system. This study undergoes two main phases; development of algorithm and models, and development of a web-based and mobile app.The proposed model operates using Firefly multi-objective optimization algorithm that creates an optimal schedule for the relocation of victims and resources for an evacuation centre.The proposed decision aid model and the adaptive system can be applied in supporting the National Security Council’s respond mechanisms for handling disaster management level II (State level) especially in providing better management of the flood evacuating centres

    Survey analysis for optimization algorithms applied to electroencephalogram

    Get PDF
    This paper presents a survey for optimization approaches that analyze and classify Electroencephalogram (EEG) signals. The automatic analysis of EEG presents a significant challenge due to the high-dimensional data volume. Optimization algorithms seek to achieve better accuracy by selecting practical features and reducing unwanted features. Forty-seven reputable research papers are provided in this work, emphasizing the developed and executed techniques divided into seven groups based on the applied optimization algorithm particle swarm optimization (PSO), ant colony optimization (ACO), artificial bee colony (ABC), grey wolf optimizer (GWO), Bat, Firefly, and other optimizer approaches). The main measures to analyze this paper are accuracy, precision, recall, and F1-score assessment. Several datasets have been utilized in the included papers like EEG Bonn University, CHB-MIT, electrocardiography (ECG) dataset, and other datasets. The results have proven that the PSO and GWO algorithms have achieved the highest accuracy rate of around 99% compared with other techniques

    Performance Evaluation of Intrusion Detection System using Selected Features and Machine Learning Classifiers

    Get PDF
    Some of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems.  Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic.  Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance.  In this study, two different sets of selected features have been adopted to train four machine-learning based classifiers.  The two sets of selected features are based on Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) approach respectively.  These evolutionary-based algorithms are known to be effective in solving optimization problems.  The classifiers used in this study are Naïve Bayes, k-Nearest Neighbor, Decision Tree and Support Vector Machine that have been trained and tested using the NSL-KDD dataset. The performance of the abovementioned classifiers using different features values was evaluated.  The experimental results indicate that the detection accuracy improves by approximately 1.55% when implemented using the PSO-based selected features than that of using GA-based selected features.  The Decision Tree classifier that was trained with PSO-based selected features outperformed other classifiers with accuracy, precision, recall, and f-score result of 99.38%, 99.36%, 99.32%, and 99.34% respectively.  The results show that using optimal features coupling with a good classifier in a detection system able to reduce the classifier model building time, reduce the computational burden to analyze data, and consequently attain high detection rate
    corecore