523 research outputs found

    Disruption analytics in urban metro systems with large-scale automated data

    Get PDF
    Urban metro systems are frequently affected by disruptions such as infrastructure malfunctions, rolling stock breakdowns and accidents. Such disruptions give rise to delays, congestion and inconvenience for public transport users, which in turn, lead to a wider range of negative impacts on the social economy and wellbeing. This PhD thesis aims to improve our understanding of disruption impacts and improve the ability of metro operators to detect and manage disruptions by using large-scale automated data. The crucial precondition of any disruption analytics is to have accurate information about the location, occurrence time, duration and propagation of disruptions. In pursuit of this goal, the thesis develops statistical models to detect disruptions via deviations in trains’ headways relative to their regular services. Our method is a unique contribution in the sense that it is based on automated vehicle location data (data-driven) and the probabilistic framework is effective to detect any type of service interruptions, including minor delays that last just a few minutes. As an important research outcome, the thesis delivers novel analyses of the propagation progress of disruptions along metro lines, thus enabling us to distinguish primary and secondary disruptions as well as recovery interventions performed by operators. The other part of the thesis provides new insights for quantifying disruption impacts and measuring metro vulnerability. One of our key messages is that in metro systems there are factors influencing both the occurrence of disruptions and their outcomes. With such confounding factors, we show that causal inference is a powerful tool to estimate unbiased impacts on passenger demand and journey time, which is also capable of quantifying the spatial-temporal propagation of disruption impacts within metro networks. The causal inference approaches are applied to empirical studies based on the Hong Kong Mass Transit Railway (MTR). Our conclusions can assist researchers and practitioners in two applications: (i) the evaluation of metro performance such as service reliability, system vulnerability and resilience, and (ii) the management of future disruptions.Open Acces

    Advances in Public Transport Platform for the Development of Sustainability Cities

    Get PDF
    Modern societies demand high and varied mobility, which in turn requires a complex transport system adapted to social needs that guarantees the movement of people and goods in an economically efficient and safe way, but all are subject to a new environmental rationality and the new logic of the paradigm of sustainability. From this perspective, an efficient and flexible transport system that provides intelligent and sustainable mobility patterns is essential to our economy and our quality of life. The current transport system poses growing and significant challenges for the environment, human health, and sustainability, while current mobility schemes have focused much more on the private vehicle that has conditioned both the lifestyles of citizens and cities, as well as urban and territorial sustainability. Transport has a very considerable weight in the framework of sustainable development due to environmental pressures, associated social and economic effects, and interrelations with other sectors. The continuous growth that this sector has experienced over the last few years and its foreseeable increase, even considering the change in trends due to the current situation of generalized crisis, make the challenge of sustainable transport a strategic priority at local, national, European, and global levels. This Special Issue will pay attention to all those research approaches focused on the relationship between evolution in the area of transport with a high incidence in the environment from the perspective of efficiency

    Routine pattern discovery and anomaly detection in individual travel behavior

    Full text link
    Discovering patterns and detecting anomalies in individual travel behavior is a crucial problem in both research and practice. In this paper, we address this problem by building a probabilistic framework to model individual spatiotemporal travel behavior data (e.g., trip records and trajectory data). We develop a two-dimensional latent Dirichlet allocation (LDA) model to characterize the generative mechanism of spatiotemporal trip records of each traveler. This model introduces two separate factor matrices for the spatial dimension and the temporal dimension, respectively, and use a two-dimensional core structure at the individual level to effectively model the joint interactions and complex dependencies. This model can efficiently summarize travel behavior patterns on both spatial and temporal dimensions from very sparse trip sequences in an unsupervised way. In this way, complex travel behavior can be modeled as a mixture of representative and interpretable spatiotemporal patterns. By applying the trained model on future/unseen spatiotemporal records of a traveler, we can detect her behavior anomalies by scoring those observations using perplexity. We demonstrate the effectiveness of the proposed modeling framework on a real-world license plate recognition (LPR) data set. The results confirm the advantage of statistical learning methods in modeling sparse individual travel behavior data. This type of pattern discovery and anomaly detection applications can provide useful insights for traffic monitoring, law enforcement, and individual travel behavior profiling

    Traffic Prediction using Artificial Intelligence: Review of Recent Advances and Emerging Opportunities

    Full text link
    Traffic prediction plays a crucial role in alleviating traffic congestion which represents a critical problem globally, resulting in negative consequences such as lost hours of additional travel time and increased fuel consumption. Integrating emerging technologies into transportation systems provides opportunities for improving traffic prediction significantly and brings about new research problems. In order to lay the foundation for understanding the open research challenges in traffic prediction, this survey aims to provide a comprehensive overview of traffic prediction methodologies. Specifically, we focus on the recent advances and emerging research opportunities in Artificial Intelligence (AI)-based traffic prediction methods, due to their recent success and potential in traffic prediction, with an emphasis on multivariate traffic time series modeling. We first provide a list and explanation of the various data types and resources used in the literature. Next, the essential data preprocessing methods within the traffic prediction context are categorized, and the prediction methods and applications are subsequently summarized. Lastly, we present primary research challenges in traffic prediction and discuss some directions for future research.Comment: Published in Transportation Research Part C: Emerging Technologies (TR_C), Volume 145, 202

    Analyse et détection des trajectoires d'approches atypiques des aéronefs à l'aide de l'analyse de données fonctionnelles et de l'apprentissage automatique

    Get PDF
    L'amélioration de la sécurité aérienne implique généralement l'identification, la détection et la gestion des événements indésirables qui peuvent conduire à des événements finaux mortels. De précédentes études menées par la DSAC, l'autorité de surveillance française, ont permis d'identifier les approches non-conformes présentant des déviations par rapport aux procédures standards comme des événements indésirables. Cette thèse vise à explorer les techniques de l'analyse de données fonctionnelles et d'apprentissage automatique afin de fournir des algorithmes permettant la détection et l'analyse de trajectoires atypiques en approche à partir de données sol. Quatre axes de recherche sont abordés. Le premier axe vise à développer un algorithme d'analyse post-opérationnel basé sur des techniques d'analyse de données fonctionnelles et d'apprentissage non-supervisé pour la détection de comportements atypiques en approche. Le modèle sera confronté à l'analyse des bureaux de sécurité des vols des compagnies aériennes, et sera appliqué dans le contexte particulier de la période COVID-19 pour illustrer son utilisation potentielle alors que le système global ATM est confronté à une crise. Le deuxième axe de recherche s'intéresse plus particulièrement à la génération et à l'extraction d'informations à partir de données radar à l'aide de nouvelles techniques telles que l'apprentissage automatique. Ces méthodologies permettent d'améliorer la compréhension et l'analyse des trajectoires, par exemple dans le cas de l'estimation des paramètres embarqués à partir des paramètres radar. Le troisième axe, propose de nouvelles techniques de manipulation et de génération de données en utilisant le cadre de l'analyse de données fonctionnelles. Enfin, le quatrième axe se concentre sur l'extension en temps réel de l'algorithme post-opérationnel grâce à l'utilisation de techniques de contrôle optimal, donnant des pistes vers de nouveaux systèmes d'alerte permettant une meilleure conscience de la situation.Improving aviation safety generally involves identifying, detecting and managing undesirable events that can lead to final events with fatalities. Previous studies conducted by the French National Supervisory Authority have led to the identification of non-compliant approaches presenting deviation from standard procedures as undesirable events. This thesis aims to explore functional data analysis and machine learning techniques in order to provide algorithms for the detection and analysis of atypical trajectories in approach from ground side. Four research directions are being investigated. The first axis aims to develop a post-op analysis algorithm based on functional data analysis techniques and unsupervised learning for the detection of atypical behaviours in approach. The model is confronted with the analysis of airline flight safety offices, and is applied in the particular context of the COVID-19 crisis to illustrate its potential use while the global ATM system is facing a standstill. The second axis of research addresses the generation and extraction of information from radar data using new techniques such as Machine Learning. These methodologies allow to \mbox{improve} the understanding and the analysis of trajectories, for example in the case of the estimation of on-board parameters from radar parameters. The third axis proposes novel data manipulation and generation techniques using the functional data analysis framework. Finally, the fourth axis focuses on extending the post-operational algorithm into real time with the use of optimal control techniques, giving directions to new situation awareness alerting systems

    Detecting metro service disruptions via large-scale vehicle location data

    Get PDF
    Urban metro systems are often affected by disruptions such as infrastructure malfunctions, rolling stock breakdowns and accidents. The crucial prerequisite of any disruption analytics is to have accurate information about the location, occurrence time, duration and propagation of disruptions. To pursue this goal, we detect the abnormal deviations in trains’ headway relative to their regular services by using Gaussian mixture models. Our method is a unique contribution in the sense that it proposes a novel, probabilistic, unsupervised clustering framework and it can effectively detect any type of service interruptions, including minor delays of just a few minutes. In contrast to traditional manual inspections and other detection methods based on social media data or smart card data, which suffer from human errors, limited monitoring coverage, and potential bias, our approach uses information on train trajectories derived from automated vehicle location (train movement) data. As an important research output, this paper delivers innovative analyses of the propagation progress of disruptions along metro lines, which enables us to distinguish primary and secondary disruptions as well as effective recovery interventions performed by operators
    • …
    corecore