680 research outputs found

    Anomaly Detection Analysis with Graph-Based Cyber Threat Hunting Scheme

    Get PDF
    As advanced persistence threats become more prevalent and cyber-attacks become more severe, cyber defense analysts will be required to exert greater effort to protect their systems. A continuous defense mechanism is needed to ensure no incidents occur in the system, one of which is cyber threat hunting. To prove that cyber threat hunting is important, this research simulated a cyber-attack that has successfully entered the system but was not detected by the IDS device even though it already has relatively updated rules. Based on the simulation result, this research designed a data correlation model implemented in a graph visualization with enrichment on-demand features to help analysts conduct cyber threat hunting with graph visualization to detect cyber-attacks. The data correlation model developed in this research can overcome this gap and increase the percentage of detection that was originally undetected / 0% by IDS, to be detected by more than 45% and can even be assessed to be 100% detected based on the anomaly pattern that was successfully found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Cyber security Reinforcement through Firewall Log Analysis and Machine Learning

    Get PDF
    Firewalls play a crucial role as a primary protective measure in safeguarding network security, effectively mitigating risks posed by external vulnerabilities and internal security breaches. This study presents a new framework that utilizes firewall log data to classify incoming data packets as either permitted or forbidden. The dataset utilized in this research is obtained from Department of CS&IT,  MANU University and is subjected to a thorough data pre-processing procedure. This procedure includes several tasks such as managing missing values, encoding categorical variables, standardizing numerical attributes, and guaranteeing data coherence. In order to mitigate the issue of class imbalance within the target variable, we utilize a range of machine learning models and assess their efficacy through the examination of fundamental metrics such as accuracy, precision, recall, and F1-score. The results of our study demonstrate that the AdaBoost model has superior performance compared to other models, achieving a remarkable accuracy rate of 99.00%. This study demonstrates the application of machine learning methods to automatically identify the activities indicated in firewall logs, thereby improving the security of corporate networks. Through the implementation of automation, we facilitate a more dependable and efficient method of detecting and addressing possible risks, thereby strengthening network security measures and protecting valuable corporate information.&nbsp

    AVOIDIT IRS: An Issue Resolution System To Resolve Cyber Attacks

    Get PDF
    Cyber attacks have greatly increased over the years and the attackers have progressively improved in devising attacks against specific targets. Cyber attacks are considered a malicious activity launched against networks to gain unauthorized access causing modification, destruction, or even deletion of data. This dissertation highlights the need to assist defenders with identifying and defending against cyber attacks. In this dissertation an attack issue resolution system is developed called AVOIDIT IRS (AIRS). AVOIDIT IRS is based on the attack taxonomy AVOIDIT (Attack Vector, Operational Impact, Defense, Information Impact, and Target). Attacks are collected by AIRS and classified into their respective category using AVOIDIT.Accordingly, an organizational cyber attack ontology was developed using feedback from security professionals to improve the communication and reusability amongst cyber security stakeholders. AIRS is developed as a semi-autonomous application that extracts unstructured external and internal attack data to classify attacks in sequential form. In doing so, we designed and implemented a frequent pattern and sequential classification algorithm associated with the five classifications in AVOIDIT. The issue resolution approach uses inference to educate the defender on the plausible cyber attacks. The AIRS can work in conjunction with an intrusion detection system (IDS) to provide a heuristic to cyber security breaches within an organization. AVOIDIT provides a framework for classifying appropriate attack information, which is fundamental in devising defense strategies against such cyber attacks. The AIRS is further used as a knowledge base in a game inspired defense architecture to promote game model selection upon attack identification. Future work will incorporate honeypot attack information to improve attack identification, classification, and defense propagation.In this dissertation, 1,025 common vulnerabilities and exposures (CVEs) and over 5,000 lines of log files instances were captured in the AIRS for analysis. Security experts were consulted to create rules to extract pertinent information and algorithms to correlate identified data for notification. The AIRS was developed using the Codeigniter [74] framework to provide a seamless visualization tool for data mining regarding potential cyber attacks relative to web applications. Testing of the AVOIDIT IRS revealed a recall of 88%, precision of 93%, and a 66% correlation metric

    Simple, Fast, and Accurate Cybercrime Detection on E-Government with Elastic Stack SIEM

    Get PDF
    Increased public activity in cyberspace (Internet) during the Covid-19 pandemic has also increased cybercrime cases with various attack targets, including E-Government services. Cybercrime is hidden and occurs unnoticed in E-Government, so handling it is challenging for all government agencies. The characteristics of E-Government are unique and different from other service systems in general, requiring extra anticipation for the prevention and handling of cybercrime attack threats. This research proposes log and event data analysis to detect cybercrime in e-Government using System Information and Event Management (SIEM). The main contribution of this research is a simple, fast, and accurate cybercrime detection process in the e-Government environment by increasing the level of log and event data analysis with the SIEM approach. SIEM technology based on machine learning and big data is implemented with Elastic Stack. The implemented technique can be used as a mitigation program against cybercrime threats that often attack and target e-Government. With simple, accurate, and fast cybercrime detection, it is expected to improve e-Government security and increase public confidence in public services organized by government agencies

    A Machine Learning Approach for RDP-based Lateral Movement Detection

    Get PDF
    Detecting cyber threats has been an on-going research endeavor. In this era, advanced persistent threats (APTs) can incur significant costs for organizations and businesses. The ultimate goal of cybersecurity is to thwart attackers from achieving their malicious intent, whether it is credential stealing, infrastructure takeover, or program sabotage. Every cyberattack goes through several stages before its termination. Lateral movement (LM) is one of those stages that is of particular importance. Remote Desktop Protocol (RDP) is a method used in LM to successfully authenticate to an unauthorized host that leaves footprints on both host and network logs. In this thesis, we propose to detect evidence of LM using an anomaly-based approach that leverages Windows RDP event logs. We explore different feature sets extracted from these logs and evaluate various supervised and unsupervised machine learning (ML) techniques for classifying RDP sessions with high precision and recall. We also compare the performance of our proposed approach to a state-of-the-art approach and demonstrate that our ML model outperforms in classifying RDP sessions in Windows event logs. In addition, we demonstrate that our model is robust against certain types of adversarial attacks

    Machine Learning-Enabled IoT Security: Open Issues and Challenges Under Advanced Persistent Threats

    Full text link
    Despite its technological benefits, Internet of Things (IoT) has cyber weaknesses due to the vulnerabilities in the wireless medium. Machine learning (ML)-based methods are widely used against cyber threats in IoT networks with promising performance. Advanced persistent threat (APT) is prominent for cybercriminals to compromise networks, and it is crucial to long-term and harmful characteristics. However, it is difficult to apply ML-based approaches to identify APT attacks to obtain a promising detection performance due to an extremely small percentage among normal traffic. There are limited surveys to fully investigate APT attacks in IoT networks due to the lack of public datasets with all types of APT attacks. It is worth to bridge the state-of-the-art in network attack detection with APT attack detection in a comprehensive review article. This survey article reviews the security challenges in IoT networks and presents the well-known attacks, APT attacks, and threat models in IoT systems. Meanwhile, signature-based, anomaly-based, and hybrid intrusion detection systems are summarized for IoT networks. The article highlights statistical insights regarding frequently applied ML-based methods against network intrusion alongside the number of attacks types detected. Finally, open issues and challenges for common network intrusion and APT attacks are presented for future research.Comment: ACM Computing Surveys, 2022, 35 pages, 10 Figures, 8 Table
    corecore