34 research outputs found

    Anomaly Detection in Electrocardiogram Readings with Stacked LSTM Networks

    Get PDF
    Real-world anomaly detection for time series is still a challenging task. This is especially true for periodic or quasi-periodic time series since automated approaches have to learn long-term correlations before they are able to detect anomalies. Electrocardiography (ECG) time series, a prominent real-world example of quasi-periodic signals, are investigated in this work. Anomaly detection algorithms often have the additional goal to identify anomalies in an unsupervised manner. In this paper we present an unsupervised time series anomaly detection algorithm. It learns with recurrent Long Short-Term Memory (LSTM) networks to predict the normal time series behavior. The prediction error on several prediction horizons is used to build a statistical model of normal behavior. We propose new methods that are essential for a successful model-building process and for a high signal-to-noise-ratio. We apply our method to the well-known MIT-BIH ECG data set and present first results. We obtain a good recall of anomalies while having a very low false alarm rate (FPR) in a fully unsupervised procedure. We compare also with other anomaly detectors (NuPic, ADVec) from the state-of-the-art.Algorithms and the Foundations of Software technolog

    Personal Heart Health Monitoring Based on 1D Convolutional Neural Network

    Get PDF
    The automated detection of suspicious anomalies in electrocardiogram (ECG) recordings allows frequent personal heart health monitoring and can drastically reduce the number of ECGs that need to be manually examined by the cardiologists, excluding those classified as normal, facilitating healthcare decision-making and reducing a considerable amount of time and money. In this paper, we present a system able to automatically detect the suspect of cardiac pathologies in ECG signals from personal monitoring devices, with the aim to alert the patient to send the ECG to the medical specialist for a correct diagnosis and a proper therapy. The main contributes of this work are: (a) the implementation of a binary classifier based on a 1D-CNN architecture for detecting the suspect of anomalies in ECGs, regardless of the kind of cardiac pathology; (b) the analysis was carried out on 21 classes of different cardiac pathologies classified as anomalous; and (c) the possibility to classify anomalies even in ECG segments containing, at the same time, more than one class of cardiac pathologies. Moreover, 1D-CNN based architectures can allow an implementation of the system on cheap smart devices with low computational complexity. The system was tested on the ECG signals from the MIT-BIH ECG Arrhythmia Database for the MLII derivation. Two different experiments were carried out, showing remarkable performance compared to other similar systems. The best result showed high accuracy and recall, computed in terms of ECG segments and even higher accuracy and recall in terms of patients alerted, therefore considering the detection of anomalies with respect to entire ECG recordings

    ALGAN: Time Series Anomaly Detection with Adjusted-LSTM GAN

    Full text link
    Anomaly detection in time series data, to identify points that deviate from normal behaviour, is a common problem in various domains such as manufacturing, medical imaging, and cybersecurity. Recently, Generative Adversarial Networks (GANs) are shown to be effective in detecting anomalies in time series data. The neural network architecture of GANs (i.e. Generator and Discriminator) can significantly improve anomaly detection accuracy. In this paper, we propose a new GAN model, named Adjusted-LSTM GAN (ALGAN), which adjusts the output of an LSTM network for improved anomaly detection in both univariate and multivariate time series data in an unsupervised setting. We evaluate the performance of ALGAN on 46 real-world univariate time series datasets and a large multivariate dataset that spans multiple domains. Our experiments demonstrate that ALGAN outperforms traditional, neural network-based, and other GAN-based methods for anomaly detection in time series data

    IoT Anomaly Detection Methods and Applications: A Survey

    Full text link
    Ongoing research on anomaly detection for the Internet of Things (IoT) is a rapidly expanding field. This growth necessitates an examination of application trends and current gaps. The vast majority of those publications are in areas such as network and infrastructure security, sensor monitoring, smart home, and smart city applications and are extending into even more sectors. Recent advancements in the field have increased the necessity to study the many IoT anomaly detection applications. This paper begins with a summary of the detection methods and applications, accompanied by a discussion of the categorization of IoT anomaly detection algorithms. We then discuss the current publications to identify distinct application domains, examining papers chosen based on our search criteria. The survey considers 64 papers among recent publications published between January 2019 and July 2021. In recent publications, we observed a shortage of IoT anomaly detection methodologies, for example, when dealing with the integration of systems with various sensors, data and concept drifts, and data augmentation where there is a shortage of Ground Truth data. Finally, we discuss the present such challenges and offer new perspectives where further research is required.Comment: 22 page

    Deep learning-based signal processing approaches for improved tracking of human health and behaviour with wearable sensors

    Get PDF
    This thesis explores two lines of research in the context of sequential data and machine learning in the remote environment, i.e., outside the lab setting - using data acquired from wearable devices. Firstly, we explore Generative Adversarial Networks (GANs) as a reliable tool for time series generation, imputation and forecasting. Secondly, we investigate the applicability of novel deep learning frameworks to sequential data processing and their advantages over traditional methods. More specifically, we use our models to unlock additional insights and biomarkers in human-centric datasets. Our first research avenue concerns the generation of sequential physiological data. Access to physiological data, particularly medical data, has become heavily regulated in recent years, which has presented bottlenecks in developing computational models to assist in diagnosing and treating patients. Therefore, we explore GAN models to generate medical time series data that adhere to privacy-preserving regulations. We present our novel methods of generating and imputing synthetic, multichannel sequential medical data while complying with privacy regulations. Addressing these concerns allows for sharing and disseminating medical data and, in turn, developing clinical research in the relevant fields. Secondly, we explore novel deep learning technologies applied to human-centric sequential data to unlock further insights while addressing the idea of environmentally sustainable AI. We develop novel deep learning processing methods to estimate human activity and heart rate through convolutional networks. We also introduce our ‘time series-to-time series GAN’, which maps photoplethysmograph data to blood pressure measurements. Importantly, we denoise artefact-laden biosignal data to a competitive standard using a custom objective function and novel application of GANs. These deep learning methods help to produce nuanced biomarkers and state-of-the-art insights from human physiological data. The work laid out in this thesis provides a foundation for state-of-the-art deep learning methods for sequential data processing while keeping a keen eye on sustain- able AI

    Cyber physical anomaly detection for smart homes: A survey

    Get PDF
    Twenty-first-century human beings spend more than 90\% of their time in indoor environments. The emergence of cyber systems in the physical world has a plethora of benefits towards optimising resources and improving living standards. However, because of significant vulnerabilities in cyber systems, connected physical spaces are exposed to privacy risks in addition to existing and novel security challenges. To mitigate these risks and challenges, researchers opt for anomaly detection techniques. Particularly in smart home environments, the anomaly detection techniques are either focused on network traffic (cyber phenomena) or environmental (physical phenomena) sensors' data. This paper reviewed anomaly detection techniques presented for smart home environments using cyber data and physical data in the past. We categorise anomalies as known and unknown in smart homes. We also compare publicly available datasets for anomaly detection in smart home environments. In the end, we discuss essential key considerations and provide a decision-making framework towards supporting the implementation of anomaly detection systems for smart homes

    Artificial Intelligence for Cognitive Health Assessment: State-of-the-Art, Open Challenges and Future Directions

    Get PDF
    The subjectivity and inaccuracy of in-clinic Cognitive Health Assessments (CHA) have led many researchers to explore ways to automate the process to make it more objective and to facilitate the needs of the healthcare industry. Artificial Intelligence (AI) and machine learning (ML) have emerged as the most promising approaches to automate the CHA process. In this paper, we explore the background of CHA and delve into the extensive research recently undertaken in this domain to provide a comprehensive survey of the state-of-the-art. In particular, a careful selection of significant works published in the literature is reviewed to elaborate a range of enabling technologies and AI/ML techniques used for CHA, including conventional supervised and unsupervised machine learning, deep learning, reinforcement learning, natural language processing, and image processing techniques. Furthermore, we provide an overview of various means of data acquisition and the benchmark datasets. Finally, we discuss open issues and challenges in using AI and ML for CHA along with some possible solutions. In summary, this paper presents CHA tools, lists various data acquisition methods for CHA, provides technological advancements, presents the usage of AI for CHA, and open issues, challenges in the CHA domain. We hope this first-of-its-kind survey paper will significantly contribute to identifying research gaps in the complex and rapidly evolving interdisciplinary mental health field
    corecore