5 research outputs found

    Absorbing and Shattered Fragmentation Transitions in Multilayer Coevolution

    Get PDF
    We introduce a coevolution voter model in a multilayer, by coupling a fraction of nodes across two network layers and allowing each layer to evolve according to its own topological temporal scale. When these time scales are the same the dynamics preserve the absorbing-fragmentation transition observed in a monolayer network at a critical value of the temporal scale that depends on interlayer connectivity. The time evolution equations obtained by pair approximation can be mapped to a coevolution voter model in a single layer with an effective average degree. When the two layers have different topological time scales we find an anomalous transition, named shattered fragmentation, in which the network in one layer splits into two large components in opposite states and a multiplicity of isolated nodes. We identify the growth of the number of components as a signature of this anomalous transition. We also find a critical level of interlayer coupling needed to prevent the fragmentation in a layer connected to a layer that does not fragment.Comment: 7 pages, 6 figures, last figure caption includes link to animation

    Dynamical origins of the community structure of multi-layer societies

    Get PDF
    Social structures emerge as a result of individuals managing a variety of different of social relationships. Societies can be represented as highly structured dynamic multiplex networks. Here we study the dynamical origins of the specific community structures of a large-scale social multiplex network of a human society that interacts in a virtual world of a massive multiplayer online game. There we find substantial differences in the community structures of different social actions, represented by the various network layers in the multiplex. Community size distributions are either similar to a power-law or appear to be centered around a size of 50 individuals. To understand these observations we propose a voter model that is built around the principle of triadic closure. It explicitly models the co-evolution of node- and link-dynamics across different layers of the multiplex. Depending on link- and node fluctuation rates, the model exhibits an anomalous shattered fragmentation transition, where one layer fragments from one large component into many small components. The observed community size distributions are in good agreement with the predicted fragmentation in the model. We show that the empirical pairwise similarities of network layers, in terms of link overlap and degree correlations, practically coincide with the model. This suggests that several detailed features of the fragmentation in societies can be traced back to the triadic closure processes.Comment: 8 pages, 6 figure

    Multilayer coevolution dynamics of the nonlinear voter model

    Full text link
    We study a coevolving nonlinear voter model on a two-layer network. Coevolution stands for coupled dynamics of the state of the nodes and of the topology of the network in each layer. The plasticity parameter p measures the relative time scale of the evolution of the states of the nodes and the evolution of the network by link rewiring. Nonlinearity of the interactions is taken into account through a parameter q that describes the nonlinear effect of local majorities, being q = 1 the marginal situation of the ordinary voter model. Finally the connection between the two layers is measured by a degree of multiplexing `. In terms of these three parameters, p, q and ` we find a rich phase diagram with different phases and transitions. When the two layers have the same plasticity p, the fragmentation transition observed in a single layer is shifted to larger values of p plasticity, so that multiplexing avoids fragmentation. Different plasticities for the two layers lead to new phases that do not exist in a coevolving nonlinear voter model in a single layer, namely an asymmetric fragmented phase for q > 1 and an active shattered phase for q 1, we can find two different transitions by increasing the plasticity parameter, a first absorbing transition with no fragmentation and a subsequent fragmentation transition

    Libro Blanco de los Sistemas Complejos Socio-tecnológicos

    Get PDF
    La Red SocioComplex está formada por la Universitat de Barcelona (coordinación), Fundación IMDEA Networks, Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-Universitat Illes Balears), Universidad de Burgos, Universidad Carlos III de Madrid, Universitat Rovira i Virgili, Universitat de València y Universidad de Zaragoza - Instituto de Biocomputación y Física de los Sistemas Complejos.Este libro blanco analiza por primera vez las principales fuerzas de la investigación española en ciencias de la complejidad en el contexto de los sistemas socio-tecnológicos.El Libro Blanco de los Sistemas Complejos Socio-tecnológicos forma parte del conjunto de acciones realizadas por la red temática SocioComplex FIS2015-71795-REDT financiada por parte del Ministerio de Economía, Industria y Competitividad – Agencia Estatal de Investigación y del Fondo Europeo de Desarrollo Regional (FEDER)

    The structure and dynamics of multilayer networks

    Get PDF
    In the past years, network theory has successfully characterized the interaction among the constituents of a variety of complex systems, ranging from biological to technological, and social systems. However, up until recently, attention was almost exclusively given to networks in which all components were treated on equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of the interactions under study. Only in the last years, taking advantage of the enhanced resolution in real data sets, network scientists have directed their interest to the multiplex character of real-world systems, and explicitly considered the time-varying and multilayer nature of networks. We offer here a comprehensive review on both structural and dynamical organization of graphs made of diverse relationships (layers) between its constituents, and cover several relevant issues, from a full redefinition of the basic structural measures, to understanding how the multilayer nature of the network affects processes and dynamics.Comment: In Press, Accepted Manuscript, Physics Reports 201
    corecore