2,298 research outputs found

    Anomalous Payload-Based Network Intrusion Detection

    Get PDF
    We present a payload-based anomaly detector, we call PAYL, for intrusion detection. PAYL models the normal application payload of network traffic in a fully automatic, unsupervised and very efficient fashion. We first compute during a training phase a profile byte frequency distribution and their standard deviation of the application payload flowing to a single host and port. We then use Mahalanobis distance during the detection phase to calculate the similarity of new data against the pre-computed profile. The detector compares this measure against a threshold and generates an alert when the distance of the new input exceeds this threshold. We demonstrate the surprising effectiveness of the method on the 1999 DARPA IDS dataset and a live dataset we collected on the Columbia CS department network. In once case nearly 100% accuracy is achieved with 0.1% false positive rate for port 80 traffic

    A Critical Analysis of Payload Anomaly-Based Intrusion Detection Systems

    Get PDF
    Examining payload content is an important aspect of network security, particularly in today\u27s volatile computing environment. An Intrusion Detection System (IDS) that simply analyzes packet header information cannot adequately secure a network from malicious attacks. The alternative is to perform deep-packet analysis using n-gram language parsing and neural network technology. Self Organizing Map (SOM), PAYL over Self-Organizing Maps for Intrusion Detection (POSEIDON), Anomalous Payload-based Network Intrusion Detection (PAYL), and Anagram are next-generation unsupervised payload anomaly-based IDSs. This study examines the efficacy of each system using the design-science research methodology. A collection of quantitative data and qualitative features exposes their strengths and weaknesses

    Poseidon: a 2-tier Anomaly-based Network Intrusion Detection System

    Get PDF
    We present Poseidon, a new anomaly based intrusion detection system. Poseidon is payload-based, and presents a two-tier architecture: the first stage consists of a Self-Organizing Map, while the second one is a modified PAYL system. Our benchmarks on the 1999 DARPA data set show a higher detection rate and lower number of false positives than PAYL and PHAD

    Poseidon: a 2-tier Anomaly-based Intrusion Detection System

    Get PDF
    We present Poseidon, a new anomaly based intrusion detection system. Poseidon is payload-based, and presents a two-tier architecture: the first stage consists of a Self-Organizing Map, while the second one is a modified PAYL system. Our benchmarks on the 1999 DARPA data set show a higher detection rate and lower number of false positives than PAYL and PHAD

    ATLANTIDES: An Architecture for Alert Verification in Network Intrusion Detection Systems

    Get PDF
    We present an architecture designed for alert verification (i.e., to reduce false positives) in network intrusion-detection systems. Our technique is based on a systematic (and automatic) anomaly-based analysis of the system output, which provides useful context information regarding the network services. The false positives raised by the NIDS analyzing the incoming traffic (which can be either signature- or anomaly-based) are reduced by correlating them with the output anomalies. We designed our architecture for TCP-based network services which have a client/server architecture (such as HTTP). Benchmarks show a substantial reduction of false positives between 50% and 100%

    APHRODITE: an Anomaly-based Architecture for False Positive Reduction

    Get PDF
    We present APHRODITE, an architecture designed to reduce false positives in network intrusion detection systems. APHRODITE works by detecting anomalies in the output traffic, and by correlating them with the alerts raised by the NIDS working on the input traffic. Benchmarks show a substantial reduction of false positives and that APHRODITE is effective also after a "quick setup", i.e. in the realistic case in which it has not been "trained" and set up optimall

    ATLANTIDES: Automatic Configuration for Alert Verification in Network Intrusion Detection Systems

    Get PDF
    We present an architecture designed for alert verification (i.e., to reduce false positives) in network intrusion-detection systems. Our technique is based on a systematic (and automatic) anomaly-based analysis of the system output, which provides useful context information regarding the network services. The false positives raised by the NIDS analyzing the incoming traffic (which can be either signature- or anomaly-based) are reduced by correlating them with the output anomalies. We designed our architecture for TCP-based network services which have a client/server architecture (such as HTTP). Benchmarks show a substantial reduction of false positives between 50% and 100%

    Intrusion Detection Systems for Community Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are being increasingly used to provide affordable network connectivity to communities where wired deployment strategies are either not possible or are prohibitively expensive. Unfortunately, computer networks (including mesh networks) are frequently being exploited by increasingly profit-driven and insidious attackers, which can affect their utility for legitimate use. In response to this, a number of countermeasures have been developed, including intrusion detection systems that aim to detect anomalous behaviour caused by attacks. We present a set of socio-technical challenges associated with developing an intrusion detection system for a community wireless mesh network. The attack space on a mesh network is particularly large; we motivate the need for and describe the challenges of adopting an asset-driven approach to managing this space. Finally, we present an initial design of a modular architecture for intrusion detection, highlighting how it addresses the identified challenges
    corecore