12,367 research outputs found

    Anodic dissolution of metals in oxide-free cryolite melts

    Get PDF
    The anodic behavior of metals in molten cryolite-alumina melts has been investigated mostly for use as inert anodes for the Hall-Héroult process. In the present work, gold, platinum, palladium, copper, tungsten, nickel, cobalt and iron metal electrodes were anodically polarized in an oxide-free cryolite melt (11%wt. excess AlF3 ; 5%wt. CaF2) at 1273 K. The aim of the experiments was to characterize the oxidation reactions of the metals occurring without the effect of oxygen-containing dissolved species. The anodic dissolution of each metal was demonstrated, and electrochemical reactions were assigned using reversible potential calculation. The relative stability of metals as well as the possibility of generating pure fluorine is discussed

    Electrochemical corrosion studies

    Get PDF
    The objective was to gain familiarity with the Model 350 Corrosion Measurement Console, to determine if metal protection by grease coatings can be measured by the polarization-resistance method, and to compare corrosion rates of 4130 steel coated with various greases. Results show that grease protection of steel may be determined electrochemically. Studies were also conducted to determine the effectiveness of certain corrosion inhibitors on aluminum and steel

    Use of cyclic current reversal polarization voltammetry for investigating the relationship between corrosion resistance and heat-treatment induced variations in microstructures of 400 C martensitic stainless steels

    Get PDF
    Software for running a cyclic current reversal polarization voltammagram has been developed for use with a EG&G Princeton Applied Research Model 273 potentiostat/galvanostat system. The program, which controls the magnitude, direction and duration of an impressed galvanostatic current, will produce data in ASCII spreadsheets (Lotus, Quattro) for graphical representation of CCRPV voltammograms. The program was used to determine differences in corrosion resistance of 440 C martenstic stainless steel produced as a result of changes in microstructure effected by tempering. It was determined that tempering at all temperatures above 400 F resulted in increased polarizability of the material, with the increased likelihood that pitting would be initiated upon exposure to marine environments. These results will be used in development of remedial procedures for lowering the susceptibility of these alloys toward the stress corrosion cracking experienced in bearings used in high pressure oxygen turbopumps used in the main engines of space shuttle orbiters

    Corrosion Inhibition of Thiourea and Thiadiazole Derivatives : A Review

    Get PDF
    The continuous search for better corrosion inhibitors, due to vast differences in the media encountered in industry remains a focal point in corrosion control. The use of organic compounds to inhibit corrosion has assumed great significance due to their application in preventing corrosion under various corrosive environments. These compounds have great potential to inhibit aqueous corrosion due to film formation by adsorption on the metal surface. This paper reviews the inhibitive effect of thiourea and thiadiazole derivatives. This group of organosulphur and heterocyclic compounds and derivatives has important theoretical and practical applications, but their inhibition mechanism is not fully understood, despite extensive study. The effect of these compounds on the corrosion of metallic alloys was evaluated through assessment of various journals and experimental techniques. The corrosion rate was found to be a function of different variables. Due attention was paid to the systematic study of inhibitor action of derivatives with much emphasis on the functional groups of the molecular structure. From the comprehensive discourse presented, it is concluded that the derivatives fulfill the basic requirements for consideration as an efficient corrosion inhibito

    Effect of Aminobenzene Concentrations on the Corrosion Inhibition of Mild Steel in Sulphuric Acid

    Get PDF
    The inhibiting action of aminobenzene concentration against the corrosion of mild steel in dilute sulphuric acid contaminated with 5% sodium chloride was studied using weight-loss method, calculated corrosion rates from the obtained weight loss data, potentiodynamic polarization measurements and metallographic macrographs. Results show aminobenzene has strong inhibitory effects with inhibitor efficiency increasing with increase in inhibitor concentration at ambient temperature. Maximum efficiency of 99.83% was obtained at 20% concentration of aminobenzene due to adhesion of the inhibitive precipitates through physisorption on the mild steel. This is further justified by the graphs of weight- loss and corrosion rate against exposure which illustrates the corrosion inhibition performance of the inhibitor. Results obtained from potentiodynamic experiments had good correlation with those of the gravimetric methods. The obtained macrographs could also be correlated with the gravimetric method dat

    Contribution of cellular automata to the understanding of corrosion phenomena

    Full text link
    We present a stochastic CA modelling approach of corrosion based on spatially separated electrochemical half-reactions, diffusion, acido-basic neutralization in solution and passive properties of the oxide layers. Starting from different initial conditions, a single framework allows one to describe generalised corrosion, localised corrosion, reactive and passive surfaces, including occluded corrosion phenomena as well. Spontaneous spatial separation of anodic and cathodic zones is associated with bare metal and passivated metal on the surface. This separation is also related to local acidification of the solution. This spontaneous change is associated with a much faster corrosion rate. Material morphology is closely related to corrosion kinetics, which can be used for technological applications.Comment: 13 pages, 9 figure

    An electrochemical and surface analytical study of the formation of nanoporous oxides on niobium

    Get PDF
    In the present paper, the anodization of Nb in mixed sulphate + fluoride electrolytes resulting in the formation of a nanoporous oxide film has been studied. Chronoamperometry and electrochemical impedance spectroscopy have been employed to characterise in situ the kinetics of the oxidation process. In addition, the evolution of the layer structure and morphology has been followed by ex situ scanning electron microscopy. Particularly, local electrochemical impedance spectroscopy has been used to discern between the mesoscopic 2D and 3D distributions of time constants at the electrode surface. The similarity between local and global impedance spectra during anodic oxidation of Nb demonstrates the presence of an inherent 3D distribution of the high-frequency time constant, which is interpreted as in-depth variation of the steady state conductivity of the passive film. The experimental and calculational results are discussed in relation to the micro- and nanoscopic structure of the formed oxide
    corecore