920 research outputs found

    Generalization and variations of Pellet's theorem for matrix polynomials

    Full text link
    We derive a generalized matrix version of Pellet's theorem, itself based on a generalized Rouch\'{e} theorem for matrix-valued functions, to generate upper, lower, and internal bounds on the eigenvalues of matrix polynomials. Variations of the theorem are suggested to try and overcome situations where Pellet's theorem cannot be applied.Comment: 20 page

    Zero Distribution of Random Polynomials

    Full text link
    We study global distribution of zeros for a wide range of ensembles of random polynomials. Two main directions are related to almost sure limits of the zero counting measures, and to quantitative results on the expected number of zeros in various sets. In the simplest case of Kac polynomials, given by the linear combinations of monomials with i.i.d. random coefficients, it is well known that their zeros are asymptotically uniformly distributed near the unit circumference under mild assumptions on the coefficients. We give estimates of the expected discrepancy between the zero counting measure and the normalized arclength on the unit circle. Similar results are established for polynomials with random coefficients spanned by different bases, e.g., by orthogonal polynomials. We show almost sure convergence of the zero counting measures to the corresponding equilibrium measures for associated sets in the plane, and quantify this convergence. Random coefficients may be dependent and need not have identical distributions in our results.Comment: 25 page

    A differential method for bounding the ground state energy

    Get PDF
    For a wide class of Hamiltonians, a novel method to obtain lower and upper bounds for the lowest energy is presented. Unlike perturbative or variational techniques, this method does not involve the computation of any integral (a normalisation factor or a matrix element). It just requires the determination of the absolute minimum and maximum in the whole configuration space of the local energy associated with a normalisable trial function (the calculation of the norm is not needed). After a general introduction, the method is applied to three non-integrable systems: the asymmetric annular billiard, the many-body spinless Coulombian problem, the hydrogen atom in a constant and uniform magnetic field. Being more sensitive than the variational methods to any local perturbation of the trial function, this method can used to systematically improve the energy bounds with a local skilled analysis; an algorithm relying on this method can therefore be constructed and an explicit example for a one-dimensional problem is given.Comment: Accepted for publication in Journal of Physics

    Location of the Zeros of Certain Complex-Valued Harmonic Polynomials

    Full text link
    Finding an approximate region containing all the zeros of analytic polynomials is a well-studied problem. But the numb er of the zeros and regions containing all the zeros of complex-valued harmonic polynomials is relatively a fresh research area. It is well known that all the zeros of analytic trinomials are enclosed in some annular sectors that take into account the magnitude of the coefficients. Following Kennedy and Dehmer, we provide the zero inclusion regions of all the zeros of complex-valued harmonic polynomials in general, and in particular, we bound all the zeros of some families of harmonic trinomials in a certain annular region.Comment: 8 page
    corecore