266,057 research outputs found

    Complex Langevin: Boundary terms and application to QCD

    Full text link
    We employ the Complex Langevin method for simulation of complex-valued actions. First, we show how to test for convergence of the method by explicitely computing boundary terms and demonstrate this in a model. Then we investigate the deconfinement phase transition of QCD with Nf=2N_f=2 Wilson-fermions using the Complex Langevin Method and. We give preliminary results for the transition temperatures up to μ/Tc(μ=0)≈5\mu/T_c(\mu=0)\approx 5 and compute the curvature coefficient κ2\kappa_2.Comment: Proceedings for The 36th Annual International Symposium on Lattice Field Theory - LATTICE2018; update: added some acknowledgement

    Simulating quantum field theory with a quantum computer

    Get PDF
    Forthcoming exascale digital computers will further advance our knowledge of quantum chromodynamics, but formidable challenges will remain. In particular, Euclidean Monte Carlo methods are not well suited for studying real-time evolution in hadronic collisions, or the properties of hadronic matter at nonzero temperature and chemical potential. Digital computers may never be able to achieve accurate simulations of such phenomena in QCD and other strongly-coupled field theories; quantum computers will do so eventually, though I'm not sure when. Progress toward quantum simulation of quantum field theory will require the collaborative efforts of quantumists and field theorists, and though the physics payoff may still be far away, it's worthwhile to get started now. Today's research can hasten the arrival of a new era in which quantum simulation fuels rapid progress in fundamental physics.Comment: 22 pages, The 36th Annual International Symposium on Lattice Field Theory - LATTICE201

    Meeting Report of the Third Annual Tri-Service Microbiome Consortium Symposium

    Get PDF
    The Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among U.S. Department of Defense (DoD) organizations and to facilitate resource, material and information sharing among consortium members. The 2019 annual symposium was held 22–24 October 2019 at Wright-Patterson Air Force Base in Dayton, OH. Presentations and discussions centered on microbiome-related topics within five broad thematic areas: 1) human microbiomes; 2) transitioning products into Warfighter solutions; 3) environmental microbiomes; 4) engineering microbiomes; and 5) microbiome simulation and characterization. Collectively, the symposium provided an update on the scope of current DoD microbiome research efforts, highlighted innovative research being done in academia and industry that can be leveraged by the DoD, and fostered collaborative opportunities. This report summarizes the presentations and outcomes of the 3rd annual TSMC symposium

    Proceedings of the 5th Baltic Mechatronics Symposium - Espoo April 17, 2020

    Get PDF
    The Baltic Mechatronics Symposium is annual symposium with the objective to provide a forum for young scientists from Baltic countries to exchange knowledge, experience, results and information in large variety of fields in mechatronics. The symposium was organized in co-operation with Taltech and Aalto University. Due to Coronavirus COVID-19 the symposium was organized as a virtual conference. The content of the proceedings1. Monitoring Cleanliness of Public Transportation with Computer Vision2. Device for Bending and Cutting Coaxial Wires for Cryostat in Quantum Computing3. Inertial Measurement Method and Application for Bowling Performance Metrics4. Mechatronics Escape Room5. Hardware-In-the-Loop Test Setup for Tuning Semi-Active Hydraulic Suspension Systems6. Newtonian Telescope Design for Stand-off Laser Induced Breakdown Spectroscopy7. Simulation and Testing of Temperature Behavior in Flat Type Linear Motor Carrier8. Powder Removal Device for Metal Additive Manufacturing9. Self-Leveling Spreader Beam for Adjusting the Orientation of an Overhead Crane Loa

    A virtual dual-level reconfigurable additive manufacturing system for digital object fabrication

    Get PDF
    This paper proposes a virtual dual-level reconfigurable additive manufacturing system (DRAMS) for simulation and verification of deposition strategies in digital fabrication of product prototypes. The DRAMS is aimed to improve additive manufacturing (AM) processes with the concept of system reconfiguration. It consists of adaptable support and manipulation modules for deposition of fabrication materials. Topologies are investigated to determine the structures of these modules, and methods are developed to evaluate and optimize the system configuration. Simulations show that the DRAMS can not only handle prototypes of different sizes and fabrication materials, but also increase the process speed. The DRAMS offers an effective tool for simulation, verification and optimization of deposition strategies under different system configurations to improve process performance.postprintThe 21st Annual International Solid Freeform Fabrication (SFF) Symposium: An Additive Manufacturing Conference, Austin, TX., 9-11 August 2010. In Proceedings of the 21st International SFF Symposium, 2010, p. 266-27

    Optimized Surface Code Communication in Superconducting Quantum Computers

    Full text link
    Quantum computing (QC) is at the cusp of a revolution. Machines with 100 quantum bits (qubits) are anticipated to be operational by 2020 [googlemachine,gambetta2015building], and several-hundred-qubit machines are around the corner. Machines of this scale have the capacity to demonstrate quantum supremacy, the tipping point where QC is faster than the fastest classical alternative for a particular problem. Because error correction techniques will be central to QC and will be the most expensive component of quantum computation, choosing the lowest-overhead error correction scheme is critical to overall QC success. This paper evaluates two established quantum error correction codes---planar and double-defect surface codes---using a set of compilation, scheduling and network simulation tools. In considering scalable methods for optimizing both codes, we do so in the context of a full microarchitectural and compiler analysis. Contrary to previous predictions, we find that the simpler planar codes are sometimes more favorable for implementation on superconducting quantum computers, especially under conditions of high communication congestion.Comment: 14 pages, 9 figures, The 50th Annual IEEE/ACM International Symposium on Microarchitectur

    Proceedings, MSVSCC 2019

    Get PDF
    Old Dominion University Department of Modeling, Simulation & Visualization Engineering (MSVE) and the Virginia Modeling, Analysis and Simulation Center (VMASC) held the 13th annual Modeling, Simulation & Visualization (MSV) Student Capstone Conference on April 18, 2019. The Conference featured student research and student projects that are central to MSV. Also participating in the conference were faculty members who volunteered their time to impart direct support to their students’ research, facilitated the various conference tracks, served as judges for each of the tracks, and provided overall assistance to the conference. Appreciating the purpose of the conference and working in a cohesive, collaborative effort, resulted in a successful symposium for everyone involved. These proceedings feature the works that were presented at the conference. Capstone Conference Chair: Dr. Yuzhong Shen Capstone Conference Student Chair: Daniel Pere
    • …
    corecore