227 research outputs found

    Automatic Vehicle Over speed Controlling System using Microcontroller Unit and ARCAD

    Get PDF
    The main purpose of this paper is to develop a system that avoid accidents because of vehicles with high speed. Also, authorizes the pedestrians and public to cross the highway road with no risk from vehicles which are moving with high speed. Generally, drivers of the vehicles with high speed drives in an uncontrollable manner even in speed limited areas without taking into consideration about the public. Even traffic policemen could not able to control them and attain good response from the high speed vehicle drivers. Also, we cannot monitor them to limit their speed at all times in those areas. So, here we develop a system which controls the speed of the vehicles in those locations without involving the drivers. Here, we employ RF communication method in controlling the speed of the vehicles. Finally, we connect RF receiver to the vehicle and locations are connected with the transmitter. Also, the transmitters are coded to send the transmitted signals continuously with a small delay between the adjacent signals. So, if a high speed vehicle is entering the location then their receivers will automatically senses the received code. Thereafter, the speed of the vehicle is limited dynamically by employing an embedded system inside them

    Aspects and directions of internal arc protectio

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Review on the Traditional and Integrated Passives: State-of-the-Art Design and Technologies

    Get PDF
    With the increased necessity of a high power density and efficient system in aerospace and marine industries, integrated motor drives provide an excellent solution in the modern era. Therefore, a close structural and functional integration of passive components has become a prerequisite task to make a compact overall system. This article reviews the existing motor drives system with integrated passive technologies. To start, the design aspect of the traditional and integrated filter inductors, using the area product approach, is discussed. Subsequently, layouts of traditional and integrated inductors are presented. The available capacitor technologies, suitable for integration, are also discussed with pros and cons of each capacitor type

    Lunar University Network for Astrophysics Research: Comprehensive Report to The NASA Lunar Science Institute. March 1, 2012

    Get PDF
    The Lunar University Network for Astrophysics Research (LUNAR) is a team of researchers and students at leading universities, NASA centers, and federal research laboratories undertaking investigations aimed at using the Moon as a platform for space science. LUNAR research includes Lunar Interior Physics & Gravitation using Lunar Laser Ranging (LLR), Low Frequency Cosmology and Astrophysics (LFCA), Planetary Science and the Lunar Ionosphere, Radio Heliophysics, and Exploration Science. The LUNAR team is exploring technologies that are likely to have a dual purpose, serving both exploration and science. There is a certain degree of commonality in much of LUNAR’s research. Specifically, the technology development for a lunar radio telescope involves elements from LFCA, Heliophysics, Exploration Science, and Planetary Science; similarly the drilling technology developed for LLR applies broadly to both Exploration and Lunar Science

    A survey on capacitor voltage control in neutral-point-clamped multilevel converters

    Get PDF
    Neutral-point-clamped multilevel converters are currently a suitable solution for a wide range of applications. It is well known that the capacitor voltage balance is a major issue for this topology. In this paper, a brief summary of the basic topologies, modulations, and features of neutral-point-clamped multilevel converters is presented, prior to a detailed description and analysis of the capacitor voltage balance behavior. Then, the most relevant methods to manage the capacitor voltage balance are presented and discussed, including operation in the overmodulation region, at low frequency-modulation indexes, with different numbers of AC phases, and with different numbers of levels. Both open- and closed-loop methods are discussed. Some methods based on adding external circuitry are also presented and analyzed. Although the focus of the paper is mainly DC–AC conversion, the techniques for capacitor voltage balance in DC–DC conversion are discussed as well. Finally, the paper concludes with some application examples benefiting from the presented techniques.Peer ReviewedPostprint (published version

    A review on power electronics technologies for power quality improvement

    Get PDF
    Nowadays, new challenges arise relating to the compensation of power quality problems, where the introduction of innovative solutions based on power electronics is of paramount importance. The evolution from conventional electrical power grids to smart grids requires the use of a large number of power electronics converters, indispensable for the integration of key technologies, such as renewable energies, electric mobility and energy storage systems, which adds importance to power quality issues. Addressing these topics, this paper presents an extensive review on power electronics technologies applied to power quality improvement, highlighting, and explaining the main phenomena associated with the occurrence of power quality problems in smart grids, their cause and effects for different activity sectors, and the main power electronics topologies for each technological solution. More specifically, the paper presents a review and classification of the main power quality problems and the respective context with the standards, a review of power quality problems related to the power production from renewables, the contextualization with solid-state transformers, electric mobility and electrical railway systems, a review of power electronics solutions to compensate the main power quality problems, as well as power electronics solutions to guarantee high levels of power quality. Relevant experimental results and exemplificative developed power electronics prototypes are also presented throughout the paper.This work has been supported by FCT-Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has been supported by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017 and by the FCT Project newERA4GRIDs PTDC/EEIEEE/30283/2017

    Permanent magnet machines for high-speed applications

    Get PDF
    This paper overviews high-speed permanent magnet (HSPM) machines, accounting for stator structures, winding configurations, rotor constructions, and parasitic effects. Firstly, single-phase and three-phase PM machines are introduced for high-speed applications. Secondly, for three-phase HSPM machines, applications, advantages, and disadvantages of slotted/slotless stator structures, non-overlapping/overlapping winding configurations, different rotor constructions, i.e., interior PM (IPM), surface-mounted PM (SPM), and solid PM, are summarised in detail. Thirdly, parasitic effects due to high-speed operation are presented, including various loss components, rotor dynamic and vibration, and thermal aspects. Overall, three-phase PM machines have no self-starting issues, and exhibit high power density, high efficiency, high critical speed, together with low vibration and noise, which make them a preferred choice for high-performance, high-speed applications
    corecore