2,879 research outputs found

    Treebank-based acquisition of wide-coverage, probabilistic LFG resources: project overview, results and evaluation

    Get PDF
    This paper presents an overview of a project to acquire wide-coverage, probabilistic Lexical-Functional Grammar (LFG) resources from treebanks. Our approach is based on an automatic annotation algorithm that annotates “raw” treebank trees with LFG f-structure information approximating to basic predicate-argument/dependency structure. From the f-structure-annotated treebank we extract probabilistic unification grammar resources. We present the annotation algorithm, the extraction of lexical information and the acquisition of wide-coverage and robust PCFG-based LFG approximations including long-distance dependency resolution. We show how the methodology can be applied to multilingual, treebank-based unification grammar acquisition. Finally we show how simple (quasi-)logical forms can be derived automatically from the f-structures generated for the treebank trees

    Treebank-based acquisition of a Chinese lexical-functional grammar

    Get PDF
    Scaling wide-coverage, constraint-based grammars such as Lexical-Functional Grammars (LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001) or Head-Driven Phrase Structure Grammars (HPSG) (Pollard and Sag, 1994) from fragments to naturally occurring unrestricted text is knowledge-intensive, time-consuming and (often prohibitively) expensive. A number of researchers have recently presented methods to automatically acquire wide-coverage, probabilistic constraint-based grammatical resources from treebanks (Cahill et al., 2002, Cahill et al., 2003; Cahill et al., 2004; Miyao et al., 2003; Miyao et al., 2004; Hockenmaier and Steedman, 2002; Hockenmaier, 2003), addressing the knowledge acquisition bottleneck in constraint-based grammar development. Research to date has concentrated on English and German. In this paper we report on an experiment to induce wide-coverage, probabilistic LFG grammatical and lexical resources for Chinese from the Penn Chinese Treebank (CTB) (Xue et al., 2002) based on an automatic f-structure annotation algorithm. Currently 96.751% of the CTB trees receive a single, covering and connected f-structure, 0.112% do not receive an f-structure due to feature clashes, while 3.137% are associated with multiple f-structure fragments. From the f-structure-annotated CTB we extract a total of 12975 lexical entries with 20 distinct subcategorisation frame types. Of these 3436 are verbal entries with a total of 11 different frame types. We extract a number of PCFG-based LFG approximations. Currently our best automatically induced grammars achieve an f-score of 81.57% against the trees in unseen articles 301-325; 86.06% f-score (all grammatical functions) and 73.98% (preds-only) against the dependencies derived from the f-structures automatically generated for the original trees in 301-325 and 82.79% (all grammatical functions) and 67.74% (preds-only) against the dependencies derived from the manually annotated gold-standard f-structures for 50 trees randomly selected from articles 301-325

    Automatic acquisition of Spanish LFG resources from the Cast3LB treebank

    Get PDF
    In this paper, we describe the automatic annotation of the Cast3LB Treebank with LFG f-structures for the subsequent extraction of Spanish probabilistic grammar and lexical resources. We adapt the approach and methodology of Cahill et al. (2004), O’Donovan et al. (2004) and elsewhere for English to Spanish and the Cast3LB treebank encoding. We report on the quality and coverage of the automatic f-structure annotation. Following the pipeline and integrated models of Cahill et al. (2004), we extract wide-coverage probabilistic LFG approximations and parse unseen Spanish text into f-structures. We also extend Bikel’s (2002) Multilingual Parse Engine to include a Spanish language module. Using the retrained Bikel parser in the pipeline model gives the best results against a manually constructed gold standard (73.20% predsonly f-score). We also extract Spanish lexical resources: 4090 semantic form types with 98 frame types. Subcategorised prepositions and particles are included in the frames

    An integrated architecture for shallow and deep processing

    Get PDF
    We present an architecture for the integration of shallow and deep NLP components which is aimed at flexible combination of different language technologies for a range of practical current and future applications. In particular, we describe the integration of a high-level HPSG parsing system with different high-performance shallow components, ranging from named entity recognition to chunk parsing and shallow clause recognition. The NLP components enrich a representation of natural language text with layers of new XML meta-information using a single shared data structure, called the text chart. We describe details of the integration methods, and show how information extraction and language checking applications for realworld German text benefit from a deep grammatical analysis

    Parser evaluation across text types

    Get PDF
    When a statistical parser is trained on one treebank, one usually tests it on another portion of the same treebank, partly due to the fact that a comparable annotation format is needed for testing. But the user of a parser may not be interested in parsing sentences from the same newspaper all over, or even wants syntactic annotations for a slightly different text type. Gildea (2001) for instance found that a parser trained on the WSJ portion of the Penn Treebank performs less well on the Brown corpus (the subset that is available in the PTB bracketing format) than a parser that has been trained only on the Brown corpus, although the latter one has only half as many sentences as the former. Additionally, a parser trained on both the WSJ and Brown corpora performs less well on the Brown corpus than on the WSJ one. This leads us to the following questions that we would like to address in this paper: - Is there a difference in usefulness of techniques that are used to improve parser performance between the same-corpus and the different-corpus case? - Are different types of parsers (rule-based and statistical) equally sensitive to corpus variation? To achieve this, we compared the quality of the parses of a hand-crafted constraint-based parser and a statistical PCFG-based parser that was trained on a treebank of German newspaper text

    From surface dependencies towards deeper semantic representations [Semantic representations]

    Get PDF
    In the past, a divide could be seen between ’deep’ parsers on the one hand, which construct a semantic representation out of their input, but usually have significant coverage problems, and more robust parsers on the other hand, which are usually based on a (statistical) model derived from a treebank and have larger coverage, but leave the problem of semantic interpretation to the user. More recently, approaches have emerged that combine the robustness of datadriven (statistical) models with more detailed linguistic interpretation such that the output could be used for deeper semantic analysis. Cahill et al. (2002) use a PCFG-based parsing model in combination with a set of principles and heuristics to derive functional (f-)structures of Lexical-Functional Grammar (LFG). They show that the derived functional structures have a better quality than those generated by a parser based on a state-of-the-art hand-crafted LFG grammar. Advocates of Dependency Grammar usually point out that dependencies already are a semantically meaningful representation (cf. Menzel, 2003). However, parsers based on dependency grammar normally create underspecified representations with respect to certain phenomena such as coordination, apposition and control structures. In these areas they are too "shallow" to be directly used for semantic interpretation. In this paper, we adopt a similar approach to Cahill et al. (2002) using a dependency-based analysis to derive functional structure, and demonstrate the feasibility of this approach using German data. A major focus of our discussion is on the treatment of coordination and other potentially underspecified structures of the dependency data input. F-structure is one of the two core levels of syntactic representation in LFG (Bresnan, 2001). Independently of surface order, it encodes abstract syntactic functions that constitute predicate argument structure and other dependency relations such as subject, predicate, adjunct, but also further semantic information such as the semantic type of an adjunct (e.g. directional). Normally f-structure is captured as a recursive attribute value matrix, which is isomorphic to a directed graph representation. Figure 5 depicts an example target f-structure. As mentioned earlier, these deeper-level dependency relations can be used to construct logical forms as in the approaches of van Genabith and Crouch (1996), who construct underspecified discourse representations (UDRSs), and Spreyer and Frank (2005), who have robust minimal recursion semantics (RMRS) as their target representation. We therefore think that f-structures are a suitable target representation for automatic syntactic analysis in a larger pipeline of mapping text to interpretation. In this paper, we report on the conversion from dependency structures to fstructure. Firstly, we evaluate the f-structure conversion in isolation, starting from hand-corrected dependencies based on the TüBa-D/Z treebank and Versley (2005)´s conversion. Secondly, we start from tokenized text to evaluate the combined process of automatic parsing (using Foth and Menzel (2006)´s parser) and f-structure conversion. As a test set, we randomly selected 100 sentences from TüBa-D/Z which we annotated using a scheme very close to that of the TiGer Dependency Bank (Forst et al., 2004). In the next section, we sketch dependency analysis, the underlying theory of our input representations, and introduce four different representations of coordination. We also describe Weighted Constraint Dependency Grammar (WCDG), the dependency parsing formalism that we use in our experiments. Section 3 characterises the conversion of dependencies to f-structures. Our evaluation is presented in section 4, and finally, section 5 summarises our results and gives an overview of problems remaining to be solved

    Parsing as Reduction

    Full text link
    We reduce phrase-representation parsing to dependency parsing. Our reduction is grounded on a new intermediate representation, "head-ordered dependency trees", shown to be isomorphic to constituent trees. By encoding order information in the dependency labels, we show that any off-the-shelf, trainable dependency parser can be used to produce constituents. When this parser is non-projective, we can perform discontinuous parsing in a very natural manner. Despite the simplicity of our approach, experiments show that the resulting parsers are on par with strong baselines, such as the Berkeley parser for English and the best single system in the SPMRL-2014 shared task. Results are particularly striking for discontinuous parsing of German, where we surpass the current state of the art by a wide margin

    Automatic treebank-based acquisition of Arabic LFG dependency structures

    Get PDF
    A number of papers have reported on methods for the automatic acquisition of large-scale, probabilistic LFG-based grammatical resources from treebanks for English (Cahill and al., 2002), (Cahill and al., 2004), German (Cahill and al., 2003), Chinese (Burke, 2004), (Guo and al., 2007), Spanish (O’Donovan, 2004), (Chrupala and van Genabith, 2006) and French (Schluter and van Genabith, 2008). Here, we extend the LFG grammar acquisition approach to Arabic and the Penn Arabic Treebank (ATB) (Maamouri and Bies, 2004), adapting and extending the methodology of (Cahill and al., 2004) originally developed for English. Arabic is challenging because of its morphological richness and syntactic complexity. Currently 98% of ATB trees (without FRAG and X) produce a covering and connected f-structure. We conduct a qualitative evaluation of our annotation against a gold standard and achieve an f-score of 95%

    Corpus Annotation for Parser Evaluation

    Full text link
    We describe a recently developed corpus annotation scheme for evaluating parsers that avoids shortcomings of current methods. The scheme encodes grammatical relations between heads and dependents, and has been used to mark up a new public-domain corpus of naturally occurring English text. We show how the corpus can be used to evaluate the accuracy of a robust parser, and relate the corpus to extant resources.Comment: 7 pages, LaTeX (uses eaclap.sty

    Data-Oriented Language Processing. An Overview

    Full text link
    During the last few years, a new approach to language processing has started to emerge, which has become known under various labels such as "data-oriented parsing", "corpus-based interpretation", and "tree-bank grammar" (cf. van den Berg et al. 1994; Bod 1992-96; Bod et al. 1996a/b; Bonnema 1996; Charniak 1996a/b; Goodman 1996; Kaplan 1996; Rajman 1995a/b; Scha 1990-92; Sekine & Grishman 1995; Sima'an et al. 1994; Sima'an 1995-96; Tugwell 1995). This approach, which we will call "data-oriented processing" or "DOP", embodies the assumption that human language perception and production works with representations of concrete past language experiences, rather than with abstract linguistic rules. The models that instantiate this approach therefore maintain large corpora of linguistic representations of previously occurring utterances. When processing a new input utterance, analyses of this utterance are constructed by combining fragments from the corpus; the occurrence-frequencies of the fragments are used to estimate which analysis is the most probable one. In this paper we give an in-depth discussion of a data-oriented processing model which employs a corpus of labelled phrase-structure trees. Then we review some other models that instantiate the DOP approach. Many of these models also employ labelled phrase-structure trees, but use different criteria for extracting fragments from the corpus or employ different disambiguation strategies (Bod 1996b; Charniak 1996a/b; Goodman 1996; Rajman 1995a/b; Sekine & Grishman 1995; Sima'an 1995-96); other models use richer formalisms for their corpus annotations (van den Berg et al. 1994; Bod et al., 1996a/b; Bonnema 1996; Kaplan 1996; Tugwell 1995).Comment: 34 pages, Postscrip
    corecore