7,378 research outputs found

    Annotation Artifacts in Natural Language Inference Data

    Full text link
    Large-scale datasets for natural language inference are created by presenting crowd workers with a sentence (premise), and asking them to generate three new sentences (hypotheses) that it entails, contradicts, or is logically neutral with respect to. We show that, in a significant portion of such data, this protocol leaves clues that make it possible to identify the label by looking only at the hypothesis, without observing the premise. Specifically, we show that a simple text categorization model can correctly classify the hypothesis alone in about 67% of SNLI (Bowman et. al, 2015) and 53% of MultiNLI (Williams et. al, 2017). Our analysis reveals that specific linguistic phenomena such as negation and vagueness are highly correlated with certain inference classes. Our findings suggest that the success of natural language inference models to date has been overestimated, and that the task remains a hard open problem.Comment: 6 pages, 1 figure, NAACL 201

    Several Experiments on Investigating Pretraining and Knowledge-Enhanced Models for Natural Language Inference

    Full text link
    Natural language inference (NLI) is among the most challenging tasks in natural language understanding. Recent work on unsupervised pretraining that leverages unsupervised signals such as language-model and sentence prediction objectives has shown to be very effective on a wide range of NLP problems. It would still be desirable to further understand how it helps NLI; e.g., if it learns artifacts in data annotation or instead learn true inference knowledge. In addition, external knowledge that does not exist in the limited amount of NLI training data may be added to NLI models in two typical ways, e.g., from human-created resources or an unsupervised pretraining paradigm. We runs several experiments here to investigate whether they help NLI in the same way, and if not,how

    SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference

    Full text link
    Given a partial description like "she opened the hood of the car," humans can reason about the situation and anticipate what might come next ("then, she examined the engine"). In this paper, we introduce the task of grounded commonsense inference, unifying natural language inference and commonsense reasoning. We present SWAG, a new dataset with 113k multiple choice questions about a rich spectrum of grounded situations. To address the recurring challenges of the annotation artifacts and human biases found in many existing datasets, we propose Adversarial Filtering (AF), a novel procedure that constructs a de-biased dataset by iteratively training an ensemble of stylistic classifiers, and using them to filter the data. To account for the aggressive adversarial filtering, we use state-of-the-art language models to massively oversample a diverse set of potential counterfactuals. Empirical results demonstrate that while humans can solve the resulting inference problems with high accuracy (88%), various competitive models struggle on our task. We provide comprehensive analysis that indicates significant opportunities for future research.Comment: EMNLP 201

    Misleading Failures of Partial-input Baselines

    Full text link
    Recent work establishes dataset difficulty and removes annotation artifacts via partial-input baselines (e.g., hypothesis-only models for SNLI or question-only models for VQA). When a partial-input baseline gets high accuracy, a dataset is cheatable. However, the converse is not necessarily true: the failure of a partial-input baseline does not mean a dataset is free of artifacts. To illustrate this, we first design artificial datasets which contain trivial patterns in the full input that are undetectable by any partial-input model. Next, we identify such artifacts in the SNLI dataset - a hypothesis-only model augmented with trivial patterns in the premise can solve 15% of the examples that are previously considered "hard". Our work provides a caveat for the use of partial-input baselines for dataset verification and creation.Comment: ACL 201

    INFOTABS: Inference on Tables as Semi-structured Data

    Full text link
    In this paper, we observe that semi-structured tabulated text is ubiquitous; understanding them requires not only comprehending the meaning of text fragments, but also implicit relationships between them. We argue that such data can prove as a testing ground for understanding how we reason about information. To study this, we introduce a new dataset called INFOTABS, comprising of human-written textual hypotheses based on premises that are tables extracted from Wikipedia info-boxes. Our analysis shows that the semi-structured, multi-domain and heterogeneous nature of the premises admits complex, multi-faceted reasoning. Experiments reveal that, while human annotators agree on the relationships between a table-hypothesis pair, several standard modeling strategies are unsuccessful at the task, suggesting that reasoning about tables can pose a difficult modeling challenge.Comment: 16 pages, 6 figures, 14 Tables, ACL 2020, Project Page: https://infotabs.github.io

    CODAH: An Adversarially Authored Question-Answer Dataset for Common Sense

    Full text link
    Commonsense reasoning is a critical AI capability, but it is difficult to construct challenging datasets that test common sense. Recent neural question answering systems, based on large pre-trained models of language, have already achieved near-human-level performance on commonsense knowledge benchmarks. These systems do not possess human-level common sense, but are able to exploit limitations of the datasets to achieve human-level scores. We introduce the CODAH dataset, an adversarially-constructed evaluation dataset for testing common sense. CODAH forms a challenging extension to the recently-proposed SWAG dataset, which tests commonsense knowledge using sentence-completion questions that describe situations observed in video. To produce a more difficult dataset, we introduce a novel procedure for question acquisition in which workers author questions designed to target weaknesses of state-of-the-art neural question answering systems. Workers are rewarded for submissions that models fail to answer correctly both before and after fine-tuning (in cross-validation). We create 2.8k questions via this procedure and evaluate the performance of multiple state-of-the-art question answering systems on our dataset. We observe a significant gap between human performance, which is 95.3%, and the performance of the best baseline accuracy of 67.5% by the BERT-Large model.Comment: 8 pages, Appeared in RepEval 201

    SocialIQA: Commonsense Reasoning about Social Interactions

    Full text link
    We introduce Social IQa, the first largescale benchmark for commonsense reasoning about social situations. Social IQa contains 38,000 multiple choice questions for probing emotional and social intelligence in a variety of everyday situations (e.g., Q: "Jordan wanted to tell Tracy a secret, so Jordan leaned towards Tracy. Why did Jordan do this?" A: "Make sure no one else could hear"). Through crowdsourcing, we collect commonsense questions along with correct and incorrect answers about social interactions, using a new framework that mitigates stylistic artifacts in incorrect answers by asking workers to provide the right answer to a different but related question. Empirical results show that our benchmark is challenging for existing question-answering models based on pretrained language models, compared to human performance (>20% gap). Notably, we further establish Social IQa as a resource for transfer learning of commonsense knowledge, achieving state-of-the-art performance on multiple commonsense reasoning tasks (Winograd Schemas, COPA).Comment: the first two authors contributed equally; accepted to EMNLP 2019; camera ready versio

    Interpreting Neural Networks With Nearest Neighbors

    Full text link
    Local model interpretation methods explain individual predictions by assigning an importance value to each input feature. This value is often determined by measuring the change in confidence when a feature is removed. However, the confidence of neural networks is not a robust measure of model uncertainty. This issue makes reliably judging the importance of the input features difficult. We address this by changing the test-time behavior of neural networks using Deep k-Nearest Neighbors. Without harming text classification accuracy, this algorithm provides a more robust uncertainty metric which we use to generate feature importance values. The resulting interpretations better align with human perception than baseline methods. Finally, we use our interpretation method to analyze model predictions on dataset annotation artifacts.Comment: EMNLP 2018 BlackboxNL

    Testing the Generalization Power of Neural Network Models Across NLI Benchmarks

    Full text link
    Neural network models have been very successful in natural language inference, with the best models reaching 90% accuracy in some benchmarks. However, the success of these models turns out to be largely benchmark specific. We show that models trained on a natural language inference dataset drawn from one benchmark fail to perform well in others, even if the notion of inference assumed in these benchmarks is the same or similar. We train six high performing neural network models on different datasets and show that each one of these has problems of generalizing when we replace the original test set with a test set taken from another corpus designed for the same task. In light of these results, we argue that most of the current neural network models are not able to generalize well in the task of natural language inference. We find that using large pre-trained language models helps with transfer learning when the datasets are similar enough. Our results also highlight that the current NLI datasets do not cover the different nuances of inference extensively enough.Comment: Accepted to the 2019 ACL Workshop BackboxNLP: Analyzing and interpreting neural networks for NL

    Transforming Question Answering Datasets Into Natural Language Inference Datasets

    Full text link
    Existing datasets for natural language inference (NLI) have propelled research on language understanding. We propose a new method for automatically deriving NLI datasets from the growing abundance of large-scale question answering datasets. Our approach hinges on learning a sentence transformation model which converts question-answer pairs into their declarative forms. Despite being primarily trained on a single QA dataset, we show that it can be successfully applied to a variety of other QA resources. Using this system, we automatically derive a new freely available dataset of over 500k NLI examples (QA-NLI), and show that it exhibits a wide range of inference phenomena rarely seen in previous NLI datasets.Comment: 11 pages, 6 figure
    • …
    corecore