103 research outputs found

    IceParser: An Incremental Finite-State Parser for Icelandic

    Get PDF
    Proceedings of the 16th Nordic Conference of Computational Linguistics NODALIDA-2007. Editors: Joakim Nivre, Heiki-Jaan Kaalep, Kadri Muischnek and Mare Koit. University of Tartu, Tartu, 2007. ISBN 978-9985-4-0513-0 (online) ISBN 978-9985-4-0514-7 (CD-ROM) pp. 128-135

    Tagging and parsing with cascaded Markov models : automation of corpus annotation

    Get PDF
    This thesis presents new techniques for parsing natural language. They are based on Markov Models, which are commonly used in part-of-speech tagging for sequential processing on the world level. We show that Markov Models can be successfully applied to other levels of syntactic processing. first two classification task are handled: the assignment of grammatical functions and the labeling of non-terminal nodes. Then, Markov Models are used to recognize hierarchical syntactic structures. Each layer of a structure is represented by a separate Markov Model. The output of a lower layer is passed as input to a higher layer, hence the name: Cascaded Markov Models. Instead of simple symbols, the states emit partial context-free structures. The new techniques are applied to corpus annotation and partial parsing and are evaluated using corpora of different languages and domains.Ausgehend von Markov-Modellen, die für das Part-of-Speech-Tagging eingesetzt werden, stellt diese Arbeit Verfahren vor, die Markov-Modelle auch auf weiteren Ebenen der syntaktischen Verarbeitung erfolgreich nutzen. Dies betrifft zum einen Klassifikationen wie die Zuweisung grammatischer Funktionen und die Bestimmung von Kategorien nichtterminaler Knoten, zum anderen die Zuweisung hierarchischer, syntaktischer Strukturen durch Markov-Modelle. Letzteres geschieht durch die Repräsentation jeder Ebene einer syntaktischen Struktur durch ein eigenes Markov-Modell, was den Namen des Verfahrens prägt: Kaskadierte Markov-Modelle. Deren Zustände geben anstelle atomarer Symbole partielle kontextfreie Strukturen aus. Diese Verfahren kommen in der Korpusannotation und dem partiellen Parsing zum Einsatz und werden anhand mehrerer Korpora evaluiert

    Tagging and parsing with cascaded Markov models : automation of corpus annotation

    Get PDF
    This thesis presents new techniques for parsing natural language. They are based on Markov Models, which are commonly used in part-of-speech tagging for sequential processing on the world level. We show that Markov Models can be successfully applied to other levels of syntactic processing. first two classification task are handled: the assignment of grammatical functions and the labeling of non-terminal nodes. Then, Markov Models are used to recognize hierarchical syntactic structures. Each layer of a structure is represented by a separate Markov Model. The output of a lower layer is passed as input to a higher layer, hence the name: Cascaded Markov Models. Instead of simple symbols, the states emit partial context-free structures. The new techniques are applied to corpus annotation and partial parsing and are evaluated using corpora of different languages and domains.Ausgehend von Markov-Modellen, die für das Part-of-Speech-Tagging eingesetzt werden, stellt diese Arbeit Verfahren vor, die Markov-Modelle auch auf weiteren Ebenen der syntaktischen Verarbeitung erfolgreich nutzen. Dies betrifft zum einen Klassifikationen wie die Zuweisung grammatischer Funktionen und die Bestimmung von Kategorien nichtterminaler Knoten, zum anderen die Zuweisung hierarchischer, syntaktischer Strukturen durch Markov-Modelle. Letzteres geschieht durch die Repräsentation jeder Ebene einer syntaktischen Struktur durch ein eigenes Markov-Modell, was den Namen des Verfahrens prägt: Kaskadierte Markov-Modelle. Deren Zustände geben anstelle atomarer Symbole partielle kontextfreie Strukturen aus. Diese Verfahren kommen in der Korpusannotation und dem partiellen Parsing zum Einsatz und werden anhand mehrerer Korpora evaluiert

    Statistical Parsing by Machine Learning from a Classical Arabic Treebank

    Get PDF
    Research into statistical parsing for English has enjoyed over a decade of successful results. However, adapting these models to other languages has met with difficulties. Previous comparative work has shown that Modern Arabic is one of the most difficult languages to parse due to rich morphology and free word order. Classical Arabic is the ancient form of Arabic, and is understudied in computational linguistics, relative to its worldwide reach as the language of the Quran. The thesis is based on seven publications that make significant contributions to knowledge relating to annotating and parsing Classical Arabic. Classical Arabic has been studied in depth by grammarians for over a thousand years using a traditional grammar known as i’rāb (إعغاة ). Using this grammar to develop a representation for parsing is challenging, as it describes syntax using a hybrid of phrase-structure and dependency relations. This work aims to advance the state-of-the-art for hybrid parsing by introducing a formal representation for annotation and a resource for machine learning. The main contributions are the first treebank for Classical Arabic and the first statistical dependency-based parser in any language for ellipsis, dropped pronouns and hybrid representations. A central argument of this thesis is that using a hybrid representation closely aligned to traditional grammar leads to improved parsing for Arabic. To test this hypothesis, two approaches are compared. As a reference, a pure dependency parser is adapted using graph transformations, resulting in an 87.47% F1-score. This is compared to an integrated parsing model with an F1-score of 89.03%, demonstrating that joint dependency-constituency parsing is better suited to Classical Arabic. The Quran was chosen for annotation as a large body of work exists providing detailed syntactic analysis. Volunteer crowdsourcing is used for annotation in combination with expert supervision. A practical result of the annotation effort is the corpus website: http://corpus.quran.com, an educational resource with over two million users per year

    Temporal processing of news : annotation of temporal expressions, verbal events and temporal relations

    Get PDF
    The ability to capture the temporal dimension of a natural language text is essential to many natural language processing applications, such as Question Answering, Automatic Summarisation, and Information Retrieval. Temporal processing is a ¯eld of Computational Linguistics which aims to access this dimension and derive a precise temporal representation of a natural language text by extracting time expressions, events and temporal relations, and then representing them according to a chosen knowledge framework. This thesis focuses on the investigation and understanding of the di®erent ways time is expressed in natural language, on the implementation of a temporal processing system in accordance with the results of this investigation, on the evaluation of the system, and on the extensive analysis of the errors and challenges that appear during system development. The ultimate goal of this research is to develop the ability to automatically annotate temporal expressions, verbal events and temporal relations in a natural language text. Temporal expression annotation involves two stages: temporal expression identi¯cation concerned with determining the textual extent of a temporal expression, and temporal expression normalisation which ¯nds the value that the temporal expression designates and represents it using an annotation standard. The research presented in this thesis approaches these tasks with a knowledge-based methodology that tackles temporal expressions according to their semantic classi¯cation. Several knowledge sources and normalisation models are experimented with to allow an analysis of their impact on system performance. The annotation of events expressed using either ¯nite or non-¯nite verbs is addressed with a method that overcomes the drawback of existing methods v which associate an event with the class that is most frequently assigned to it in a corpus and are limited in coverage by the small number of events present in the corpus. This limitation is overcome in this research by annotating each WordNet verb with an event class that best characterises that verb. This thesis also describes an original methodology for the identi¯cation of temporal relations that hold among events and temporal expressions. The method relies on sentence-level syntactic trees and a propagation of temporal relations between syntactic constituents, by analysing syntactic and lexical properties of the constituents and of the relations between them. The detailed evaluation and error analysis of the methods proposed for solving di®erent temporal processing tasks form an important part of this research. Various corpora widely used by researchers studying di®erent temporal phenomena are employed in the evaluation, thus enabling comparison with state of the art in the ¯eld. The detailed error analysis targeting each temporal processing task helps identify not only problems of the implemented methods, but also reliability problems of the annotated resources, and encourages potential reexaminations of some temporal processing tasks.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Teaching for progression: writing

    Get PDF

    Representation and Processing of Composition, Variation and Approximation in Language Resources and Tools

    Get PDF
    In my habilitation dissertation, meant to validate my capacity of and maturity for directingresearch activities, I present a panorama of several topics in computational linguistics, linguisticsand computer science.Over the past decade, I was notably concerned with the phenomena of compositionalityand variability of linguistic objects. I illustrate the advantages of a compositional approachto the language in the domain of emotion detection and I explain how some linguistic objects,most prominently multi-word expressions, defy the compositionality principles. I demonstratethat the complex properties of MWEs, notably variability, are partially regular and partiallyidiosyncratic. This fact places the MWEs on the frontiers between different levels of linguisticprocessing, such as lexicon and syntax.I show the highly heterogeneous nature of MWEs by citing their two existing taxonomies.After an extensive state-of-the art study of MWE description and processing, I summarizeMultiflex, a formalism and a tool for lexical high-quality morphosyntactic description of MWUs.It uses a graph-based approach in which the inflection of a MWU is expressed in function ofthe morphology of its components, and of morphosyntactic transformation patterns. Due tounification the inflection paradigms are represented compactly. Orthographic, inflectional andsyntactic variants are treated within the same framework. The proposal is multilingual: it hasbeen tested on six European languages of three different origins (Germanic, Romance and Slavic),I believe that many others can also be successfully covered. Multiflex proves interoperable. Itadapts to different morphological language models, token boundary definitions, and underlyingmodules for the morphology of single words. It has been applied to the creation and enrichmentof linguistic resources, as well as to morphosyntactic analysis and generation. It can be integratedinto other NLP applications requiring the conflation of different surface realizations of the sameconcept.Another chapter of my activity concerns named entities, most of which are particular types ofMWEs. Their rich semantic load turned them into a hot topic in the NLP community, which isdocumented in my state-of-the art survey. I present the main assumptions, processes and resultsissued from large annotation tasks at two levels (for named entities and for coreference), parts ofthe National Corpus of Polish construction. I have also contributed to the development of bothrule-based and probabilistic named entity recognition tools, and to an automated enrichment ofProlexbase, a large multilingual database of proper names, from open sources.With respect to multi-word expressions, named entities and coreference mentions, I pay aspecial attention to nested structures. This problem sheds new light on the treatment of complexlinguistic units in NLP. When these units start being modeled as trees (or, more generally, asacyclic graphs) rather than as flat sequences of tokens, long-distance dependencies, discontinu-ities, overlapping and other frequent linguistic properties become easier to represent. This callsfor more complex processing methods which control larger contexts than what usually happensin sequential processing. Thus, both named entity recognition and coreference resolution comesvery close to parsing, and named entities or mentions with their nested structures are analogous3to multi-word expressions with embedded complements.My parallel activity concerns finite-state methods for natural language and XML processing.My main contribution in this field, co-authored with 2 colleagues, is the first full-fledged methodfor tree-to-language correction, and more precisely for correcting XML documents with respectto a DTD. We have also produced interesting results in incremental finite-state algorithmics,particularly relevant to data evolution contexts such as dynamic vocabularies or user updates.Multilingualism is the leitmotif of my research. I have applied my methods to several naturallanguages, most importantly to Polish, Serbian, English and French. I have been among theinitiators of a highly multilingual European scientific network dedicated to parsing and multi-word expressions. I have used multilingual linguistic data in experimental studies. I believethat it is particularly worthwhile to design NLP solutions taking declension-rich (e.g. Slavic)languages into account, since this leads to more universal solutions, at least as far as nominalconstructions (MWUs, NEs, mentions) are concerned. For instance, when Multiflex had beendeveloped with Polish in mind it could be applied as such to French, English, Serbian and Greek.Also, a French-Serbian collaboration led to substantial modifications in morphological modelingin Prolexbase in its early development stages. This allowed for its later application to Polishwith very few adaptations of the existing model. Other researchers also stress the advantages ofNLP studies on highly inflected languages since their morphology encodes much more syntacticinformation than is the case e.g. in English.In this dissertation I am also supposed to demonstrate my ability of playing an active rolein shaping the scientific landscape, on a local, national and international scale. I describemy: (i) various scientific collaborations and supervision activities, (ii) roles in over 10 regional,national and international projects, (iii) responsibilities in collective bodies such as program andorganizing committees of conferences and workshops, PhD juries, and the National UniversityCouncil (CNU), (iv) activity as an evaluator and a reviewer of European collaborative projects.The issues addressed in this dissertation open interesting scientific perspectives, in whicha special impact is put on links among various domains and communities. These perspectivesinclude: (i) integrating fine-grained language data into the linked open data, (ii) deep parsingof multi-word expressions, (iii) modeling multi-word expression identification in a treebank as atree-to-language correction problem, and (iv) a taxonomy and an experimental benchmark fortree-to-language correction approaches
    corecore