41,260 research outputs found

    Unifying Functional Interpretations: Past and Future

    Full text link
    This article surveys work done in the last six years on the unification of various functional interpretations including G\"odel's dialectica interpretation, its Diller-Nahm variant, Kreisel modified realizability, Stein's family of functional interpretations, functional interpretations "with truth", and bounded functional interpretations. Our goal in the present paper is twofold: (1) to look back and single out the main lessons learnt so far, and (2) to look forward and list several open questions and possible directions for further research.Comment: 18 page

    Perspectives for proof unwinding by programming languages techniques

    Get PDF
    In this chapter, we propose some future directions of work, potentially beneficial to Mathematics and its foundations, based on the recent import of methodology from the theory of programming languages into proof theory. This scientific essay, written for the audience of proof theorists as well as the working mathematician, is not a survey of the field, but rather a personal view of the author who hopes that it may inspire future and fellow researchers

    Computability and analysis: the legacy of Alan Turing

    Full text link
    We discuss the legacy of Alan Turing and his impact on computability and analysis.Comment: 49 page

    An interpretation of the Sigma-2 fragment of classical Analysis in System T

    Get PDF
    We show that it is possible to define a realizability interpretation for the ÎŁ2\Sigma_2-fragment of classical Analysis using G\"odel's System T only. This supplements a previous result of Schwichtenberg regarding bar recursion at types 0 and 1 by showing how to avoid using bar recursion altogether. Our result is proved via a conservative extension of System T with an operator for composable continuations from the theory of programming languages due to Danvy and Filinski. The fragment of Analysis is therefore essentially constructive, even in presence of the full Axiom of Choice schema: Weak Church's Rule holds of it in spite of the fact that it is strong enough to refute the formal arithmetical version of Church's Thesis

    On what I do not understand (and have something to say): Part I

    Full text link
    This is a non-standard paper, containing some problems in set theory I have in various degrees been interested in. Sometimes with a discussion on what I have to say; sometimes, of what makes them interesting to me, sometimes the problems are presented with a discussion of how I have tried to solve them, and sometimes with failed tries, anecdote and opinion. So the discussion is quite personal, in other words, egocentric and somewhat accidental. As we discuss many problems, history and side references are erratic, usually kept at a minimum (``see ... '' means: see the references there and possibly the paper itself). The base were lectures in Rutgers Fall'97 and reflect my knowledge then. The other half, concentrating on model theory, will subsequently appear

    On the alleged simplicity of impure proof

    Get PDF
    Roughly, a proof of a theorem, is “pure” if it draws only on what is “close” or “intrinsic” to that theorem. Mathematicians employ a variety of terms to identify pure proofs, saying that a pure proof is one that avoids what is “extrinsic,” “extraneous,” “distant,” “remote,” “alien,” or “foreign” to the problem or theorem under investigation. In the background of these attributions is the view that there is a distance measure (or a variety of such measures) between mathematical statements and proofs. Mathematicians have paid little attention to specifying such distance measures precisely because in practice certain methods of proof have seemed self- evidently impure by design: think for instance of analytic geometry and analytic number theory. By contrast, mathematicians have paid considerable attention to whether such impurities are a good thing or to be avoided, and some have claimed that they are valuable because generally impure proofs are simpler than pure proofs. This article is an investigation of this claim, formulated more precisely by proof- theoretic means. After assembling evidence from proof theory that may be thought to support this claim, we will argue that on the contrary this evidence does not support the claim
    • 

    corecore