37,192 research outputs found

    Modeling the effect of anisotropic pressure on tokamak plasmas normal modes and continuum using fluid approaches

    Full text link
    Extending the ideal MHD stability code MISHKA, a new code, MISHKA-A, is developed to study the impact of pressure anisotropy on plasma stability. Based on full anisotropic equilibrium and geometry, the code can provide normal mode analysis with three fluid closure models: the single adiabatic model (SA), the double adiabatic model (CGL) and the incompressible model. A study on the plasma continuous spectrum shows that in low beta, large aspect ratio plasma, the main impact of anisotropy lies in the modification of the BAE gap and the sound frequency, if the q profile is conserved. The SA model preserves the BAE gap structure as ideal MHD, while in CGL the lowest frequency branch does not touch zero frequency at the resonant flux surface where m+nq=0m+nq=0, inducing a gap at very low frequency. Also, the BAE gap frequency with bi-Maxwellian distribution in both model becomes higher if p⊥>p∥p_\perp > p_\parallel with a q profile dependency. As a benchmark of the code, we study the m/n=1/1 internal kink mode. Numerical calculation of the marginal stability boundary with bi-Maxwellian distribution shows a good agreement with the generalized incompressible Bussac criterion [A. B. Mikhailovskii, Sov. J. Plasma Phys 9, 190 (1983)]: the mode is stabilized(destabilized) if p∥<p⊥(p∥>p⊥)p_\parallel < p_\perp (p_\parallel > p_\perp)

    Analysing the impact of anisotropy pressure on tokamak equilibria

    Get PDF
    Neutral beam injection or ion cyclotron resonance heating induces pressure anisotropy. The axisymmetric plasma equilibrium code HELENA has been upgraded to include anisotropy and toroidal flow. With both analytical and numerical methods, we have studied the determinant factors in anisotropic equilibria and their impact on flux surfaces, magnetic axis shift, the displacement of pressures and density contours from flux surface. With p∥/p⊥≈1.5p_\parallel/p_\perp \approx 1.5, p⊥p_\perp can vary 20% on s=0.5s=0.5 flux surface, in a MAST like equilibrium. We have also re-evaluated the widely applied approximation to anisotropy in which p∗=(p∥+p⊥)/2p^*=(p_\parallel + p_\perp)/2, the average of parallel and perpendicular pressure, is taken as the approximate isotropic pressure. We find the reconstructions of the same MAST discharge with p∥/p⊥≈1.25p_\parallel/p_\perp \approx 1.25, using isotropic and anisotropic model respectively, to have a 3% difference in toroidal field but a 66% difference in poloidal current

    Anisotropic diffusion of galactic cosmic ray protons and their steady-state azimuthal distribution

    Full text link
    Galactic transport models for cosmic rays involve the diffusive motion of these particles in the interstellar medium. Due to the large-scale structured galactic magnetic field this diffusion is anisotropic with respect to the local field direction. We included this transport effect along with continuous loss processes in a quantitative model of galactic propagation for cosmic ray protons which is based on stochastic differential equations. We calculated energy spectra at different positions along the Sun's galactic orbit and compared them to the isotropic diffusion case. The results show that a larger amplitude of variation as well as different spectral shapes are obtained in the introduced anisotropic diffusion scenario and emphasize the need for accurate galactic magnetic field models.Comment: 7 pages, 5 figures, accepted for publication in A&

    Pseudorapidity shape of elliptic flow as signature for fast equilibration in relativistic heavy-ion collisions at energies up to sqrt(s) = 200 GeV

    Full text link
    The implications of parton recombination processes on the dynamics of ultrarelativistic heavy-ion reactions are investigated. To do so, the quark-gluon string transport model has been extended for partonic recombination and fusion processes. Parton recombination leads to short equilibration times and improves significantly on the theoretical description of measured directed and elliptic flow, i.e., v_1 and v_2, distributions in Au+Au collisions at sqrt(s) = 200 GeV, in particular what concerns their pseudorapidity dependence. The shape of v_2(eta) is found to be closely related to fast thermalization.Comment: 7 pages (revtex4) with 4 figures, v3: substantially extended description and discussion of the model and its results, accepted for publication in Phys. Rev.

    Directed force chain networks and stress response in static granular materials

    Full text link
    A theory of stress fields in two-dimensional granular materials based on directed force chain networks is presented. A general equation for the densities of force chains in different directions is proposed and a complete solution is obtained for a special case in which chains lie along a discrete set of directions. The analysis and results demonstrate the necessity of including nonlinear terms in the equation. A line of nontrivial fixed point solutions is shown to govern the properties of large systems. In the vicinity of a generic fixed point, the response to a localized load shows a crossover from a single, centered peak at intermediate depths to two propagating peaks at large depths that broaden diffusively.Comment: 18 pages, 12 figures. Minor corrections to one figur
    • …
    corecore