66 research outputs found

    Arthritic Hand-Finger Movement Similarity Measurements: Tolerance Near Set Approach

    Get PDF
    The problem considered in this paper is how to measure the degree of resemblance between nonarthritic and arthritic hand movements during rehabilitation exercise. The solution to this problem stems from recent work on a tolerance space view of digital images and the introduction of image resemblance measures. The motivation for this work is both to quantify and to visualize differences between hand-finger movements in an effort to provide clinicians and physicians with indications of the efficacy of the prescribed rehabilitation exercise. The more recent introduction of tolerance near sets has led to a useful approach for measuring the similarity of sets of objects and their application to the problem of classifying image sequences extracted from videos showing finger-hand movement during rehabilitation exercise. The approach to measuring the resemblance between hand movement images introduced in this paper is based on an application of the well-known Hausdorff distance measure and a tolerance nearness measure. The contribution of this paper is an approach to measuring as well as visualizing the degree of separation between images in arthritic and nonarthritic hand-finger motion videos captured during rehabilitation exercise

    A Second Order TV-type Approach for Inpainting and Denoising Higher Dimensional Combined Cyclic and Vector Space Data

    Full text link
    In this paper we consider denoising and inpainting problems for higher dimensional combined cyclic and linear space valued data. These kind of data appear when dealing with nonlinear color spaces such as HSV, and they can be obtained by changing the space domain of, e.g., an optical flow field to polar coordinates. For such nonlinear data spaces, we develop algorithms for the solution of the corresponding second order total variation (TV) type problems for denoising, inpainting as well as the combination of both. We provide a convergence analysis and we apply the algorithms to concrete problems.Comment: revised submitted versio

    Neighbourhood-based vision systems

    Get PDF
    Preprint versionThe problem presented in this paper is how to find similarities between digital images useful in design cybernetic vision systems. The solution to this problem stems from a neighbourhood based vision system. A neighbourhood is viewed in the context of a covering of a visual space defined by tolerance relations. A consideration of neighbourhoods and tolerance classes leads to a highly practical tolerance near set approach in vision systems. The contribution of this article is an algorithm for finding tolerance classes, a new measure for quantifying the similarity between tolerance classes, and a practical application of the tolerance space approach."This research has been supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) research grant 185986, Manitoba Centre of Excellence Fund (MCEF) grant, Canadian Network Centre of Excellence (NCE) and Canadian Arthritis Network (CAN) grant SRI-BIO-05.

    A compressive survey on different image processing techniques to identify the brain tumor.

    Get PDF
    Medical imaging technology has revolutionized health care over the past three decades, allowing doctors to detect, cure and improve patient outcomes. Medicinal imaging involves pictures - of internal organs, parts, tissues and bones - for therapeutic examination and research purposes. X-ray and CT scanners are the two greatest results of progress in imaging methods supplanting 2D procedures. Magnetic resonance imaging (MRI) is an imaging procedure that is utilized in radiology to visualize interior structures of the body and better understand how they work. X-ray provides a 3D image of the body's interior; as well as being critical for tumor discovery, this also enables surgeons to more easily dissect infections or tumors than was possible with older X-beam technology, which provided a 2D image. This paper provides an overview of different systems that can be used for distinguishing and preparing medical images

    Arthritic hand-finger movement similarity measurements: Tolerance near set approach

    Get PDF
    The problem considered in this paper is how to measure the degree of resemblance between nonarthritic and arthritic hand movements during rehabilitation exercise. The solution to this problem stems from recent work on a tolerance space view of digital images and the introduction of image resemblance measures. The motivation for this work is both to quantify and to visualize differences between hand-finger movements in an effort to provide clinicians and physicians with indications of the efficacy of the prescribed rehabilitation exercise. The more recent introduction of tolerance near sets has led to a useful approach for measuring the similarity of sets of objects and their application to the problem of classifying image sequences extracted from videos showing finger-hand movement during rehabilitation exercise. The approach to measuring the resemblance between hand movement images introduced in this paper is based on an application of the well-known Hausdorff distancemeasure and a tolerance nearness measure. The contribution of this paper is an approach to measuring as well as visualizing the degree of separation between images in arthritic and nonarthritic hand-finger motion videos captured during rehabilitation exercise.https://www.hindawi.com/journals/cmmm/2011/569898

    Trademark image retrieval by local features

    Get PDF
    The challenge of abstract trademark image retrieval as a test of machine vision algorithms has attracted considerable research interest in the past decade. Current operational trademark retrieval systems involve manual annotation of the images (the current ‘gold standard’). Accordingly, current systems require a substantial amount of time and labour to access, and are therefore expensive to operate. This thesis focuses on the development of algorithms that mimic aspects of human visual perception in order to retrieve similar abstract trademark images automatically. A significant category of trademark images are typically highly stylised, comprising a collection of distinctive graphical elements that often include geometric shapes. Therefore, in order to compare the similarity of such images the principal aim of this research has been to develop a method for solving the partial matching and shape perception problem. There are few useful techniques for partial shape matching in the context of trademark retrieval, because those existing techniques tend not to support multicomponent retrieval. When this work was initiated most trademark image retrieval systems represented images by means of global features, which are not suited to solving the partial matching problem. Instead, the author has investigated the use of local image features as a means to finding similarities between trademark images that only partially match in terms of their subcomponents. During the course of this work, it has been established that the Harris and Chabat detectors could potentially perform sufficiently well to serve as the basis for local feature extraction in trademark image retrieval. Early findings in this investigation indicated that the well established SIFT (Scale Invariant Feature Transform) local features, based on the Harris detector, could potentially serve as an adequate underlying local representation for matching trademark images. There are few researchers who have used mechanisms based on human perception for trademark image retrieval, implying that the shape representations utilised in the past to solve this problem do not necessarily reflect the shapes contained in these image, as characterised by human perception. In response, a ii practical approach to trademark image retrieval by perceptual grouping has been developed based on defining meta-features that are calculated from the spatial configurations of SIFT local image features. This new technique measures certain visual properties of the appearance of images containing multiple graphical elements and supports perceptual grouping by exploiting the non-accidental properties of their configuration. Our validation experiments indicated that we were indeed able to capture and quantify the differences in the global arrangement of sub-components evident when comparing stylised images in terms of their visual appearance properties. Such visual appearance properties, measured using 17 of the proposed metafeatures, include relative sub-component proximity, similarity, rotation and symmetry. Similar work on meta-features, based on the above Gestalt proximity, similarity, and simplicity groupings of local features, had not been reported in the current computer vision literature at the time of undertaking this work. We decided to adopted relevance feedback to allow the visual appearance properties of relevant and non-relevant images returned in response to a query to be determined by example. Since limited training data is available when constructing a relevance classifier by means of user supplied relevance feedback, the intrinsically non-parametric machine learning algorithm ID3 (Iterative Dichotomiser 3) was selected to construct decision trees by means of dynamic rule induction. We believe that the above approach to capturing high-level visual concepts, encoded by means of meta-features specified by example through relevance feedback and decision tree classification, to support flexible trademark image retrieval and to be wholly novel. The retrieval performance the above system was compared with two other state-of-the-art image trademark retrieval systems: Artisan developed by Eakins (Eakins et al., 1998) and a system developed by Jiang (Jiang et al., 2006). Using relevance feedback, our system achieves higher average normalised precision than either of the systems developed by Eakins’ or Jiang. However, while our trademark image query and database set is based on an image dataset used by Eakins, we employed different numbers of images. It was not possible to access to the same query set and image database used in the evaluation of Jiang’s trademark iii image retrieval system evaluation. Despite these differences in evaluation methodology, our approach would appear to have the potential to improve retrieval effectiveness

    Statistical Approaches to Inferring Object Shape from Single Images

    Get PDF
    Depth inference is a fundamental problem of computer vision with a broad range of potential applications. Monocular depth inference techniques, particularly shape from shading dates back to as early as the 40's when it was first used to study the shape of the lunar surface. Since then there has been ample research to develop depth inference algorithms using monocular cues. Most of these are based on physical models of image formation and rely on a number of simplifying assumptions that do not hold for real world and natural imagery. Very few make use of the rich statistical information contained in real world images and their 3D information. There have been a few notable exceptions though. The study of statistics of natural scenes has been concentrated on outdoor scenes which are cluttered. Statistics of scenes of single objects has been less studied, but is an essential part of daily human interaction with the environment. Inferring shape of single objects is a very important computer vision problem which has captured the interest of many researchers over the past few decades and has applications in object recognition, robotic grasping, fault detection and Content Based Image Retrieval (CBIR). This thesis focuses on studying the statistical properties of single objects and their range images which can benefit shape inference techniques. I acquired two databases: Single Object Range and HDR (SORH) and the Eton Myers Database of single objects, including laser-acquired depth, binocular stereo, photometric stereo and High Dynamic Range (HDR) photography. I took a data driven approach and studied the statistics of color and range images of real scenes of single objects along with whole 3D objects and uncovered some interesting trends in the data. The fractal structure of natural images was previously well known, and thought to be a universal property. However, my research showed that the fractal structure of single objects and surfaces is governed by a wholly different set of rules. Classical computer vision problems of binocular and multi-view stereo, photometric stereo, shape from shading, structure from motion, and others, all rely on accurate and complete models of which 3D shapes and textures are plausible in nature, to avoid producing unlikely outputs. Bayesian approaches are common for these problems, and hopefully the findings on the statistics of the shape of single objects from this work and others will both inform new and more accurate Bayesian priors on shape, and also enable more efficient probabilistic inference procedures
    corecore