1,887 research outputs found

    Learning shape correspondence with anisotropic convolutional neural networks

    Get PDF
    Establishing correspondence between shapes is a fundamental problem in geometry processing, arising in a wide variety of applications. The problem is especially difficult in the setting of non-isometric deformations, as well as in the presence of topological noise and missing parts, mainly due to the limited capability to model such deformations axiomatically. Several recent works showed that invariance to complex shape transformations can be learned from examples. In this paper, we introduce an intrinsic convolutional neural network architecture based on anisotropic diffusion kernels, which we term Anisotropic Convolutional Neural Network (ACNN). In our construction, we generalize convolutions to non-Euclidean domains by constructing a set of oriented anisotropic diffusion kernels, creating in this way a local intrinsic polar representation of the data (`patch'), which is then correlated with a filter. Several cascades of such filters, linear, and non-linear operators are stacked to form a deep neural network whose parameters are learned by minimizing a task-specific cost. We use ACNNs to effectively learn intrinsic dense correspondences between deformable shapes in very challenging settings, achieving state-of-the-art results on some of the most difficult recent correspondence benchmarks

    Geometric deep learning

    Get PDF
    The goal of these course notes is to describe the main mathematical ideas behind geometric deep learning and to provide implementation details for several applications in shape analysis and synthesis, computer vision and computer graphics. The text in the course materials is primarily based on previously published work. With these notes we gather and provide a clear picture of the key concepts and techniques that fall under the umbrella of geometric deep learning, and illustrate the applications they enable. We also aim to provide practical implementation details for the methods presented in these works, as well as suggest further readings and extensions of these ideas

    Flow Field Post Processing via Partial Differential Equations

    Get PDF

    Flow Field Post Processing via Partial Differential Equations

    Get PDF

    Geometric deep learning for shape analysis: extending deep learning techniques to non-Euclidean manifolds

    Get PDF
    The past decade in computer vision research has witnessed the re-emergence of artificial neural networks (ANN), and in particular convolutional neural network (CNN) techniques, allowing to learn powerful feature representations from large collections of data. Nowadays these techniques are better known under the umbrella term deep learning and have achieved a breakthrough in performance in a wide range of image analysis applications such as image classification, segmentation, and annotation. Nevertheless, when attempting to apply deep learning paradigms to 3D shapes one has to face fundamental differences between images and geometric objects. The main difference between images and 3D shapes is the non-Euclidean nature of the latter. This implies that basic operations, such as linear combination or convolution, that are taken for granted in the Euclidean case, are not even well defined on non-Euclidean domains. This happens to be the major obstacle that so far has precluded the successful application of deep learning methods on non-Euclidean geometric data. The goal of this thesis is to overcome this obstacle by extending deep learning tecniques (including, but not limiting to CNNs) to non-Euclidean domains. We present different approaches providing such extension and test their effectiveness in the context of shape similarity and correspondence applications. The proposed approaches are evaluated on several challenging experiments, achieving state-of-the- art results significantly outperforming other methods. To the best of our knowledge, this thesis presents different original contributions. First, this work pioneers the generalization of CNNs to discrete manifolds. Second, it provides an alternative formulation of the spectral convolution operation in terms of the windowed Fourier transform to overcome the drawbacks of the Fourier one. Third, it introduces a spatial domain formulation of convolution operation using patch operators and several ways of their construction (geodesic, anisotropic diffusion, mixture of Gaussians). Fourth, at the moment of publication the proposed approaches achieved state-of-the-art results in different computer graphics and vision applications such as shape descriptors and correspondence

    Level set and PDE methods for visualization

    Get PDF
    Notes from IEEE Visualization 2005 Course #6, Minneapolis, MN, October 25, 2005. Retrieved 3/16/2006 from http://www.cs.drexel.edu/~david/Papers/Viz05_Course6_Notes.pdf.Level set methods, an important class of partial differential equation (PDE) methods, define dynamic surfaces implicitly as the level set (isosurface) of a sampled, evolving nD function. This course is targeted for researchers interested in learning about level set and other PDE-based methods, and their application to visualization. The course material will be presented by several of the recognized experts in the field, and will include introductory concepts, practical considerations and extensive details on a variety of level set/PDE applications. The course will begin with preparatory material that introduces the concept of using partial differential equations to solve problems in visualization. This will include the structure and behavior of several different types of differential equations, e.g. the level set, heat and reaction-diffusion equations, as well as a general approach to developing PDE-based applications. The second stage of the course will describe the numerical methods and algorithms needed to implement the mathematics and methods presented in the first stage, including information on implementing the algorithms on GPUs. Throughout the course the technical material will be tied to applications, e.g. image processing, geometric modeling, dataset segmentation, model processing, surface reconstruction, anisotropic geometric diffusion, flow field post-processing and vector visualization. Prerequisites: Knowledge of calculus, linear algebra, computer graphics, visualization, geometric modeling and computer vision. Some familiarity with differential geometry, differential equations, numerical computing and image processing is strongly recommended, but not required
    • …
    corecore