292 research outputs found

    Color image segmentation using a self-initializing EM algorithm

    Get PDF
    This paper presents a new method based on the Expectation-Maximization (EM) algorithm that we apply for color image segmentation. Since this algorithm partitions the data based on an initial set of mixtures, the color segmentation provided by the EM algorithm is highly dependent on the starting condition (initialization stage). Usually the initialization procedure selects the color seeds randomly and often this procedure forces the EM algorithm to converge to numerous local minima and produce inappropriate results. In this paper we propose a simple and yet effective solution to initialize the EM algorithm with relevant color seeds. The resulting self initialised EM algorithm has been included in the development of an adaptive image segmentation scheme that has been applied to a large number of color images. The experimental data indicates that the refined initialization procedure leads to improved color segmentation

    Color image segmentation using a spatial k-means clustering algorithm

    Get PDF
    This paper details the implementation of a new adaptive technique for color-texture segmentation that is a generalization of the standard K-Means algorithm. The standard K-Means algorithm produces accurate segmentation results only when applied to images defined by homogenous regions with respect to texture and color since no local constraints are applied to impose spatial continuity. In addition, the initialization of the K-Means algorithm is problematic and usually the initial cluster centers are randomly picked. In this paper we detail the implementation of a novel technique to select the dominant colors from the input image using the information from the color histograms. The main contribution of this work is the generalization of the K-Means algorithm that includes the primary features that describe the color smoothness and texture complexity in the process of pixel assignment. The resulting color segmentation scheme has been applied to a large number of natural images and the experimental data indicates the robustness of the new developed segmentation algorithm

    Performance characterization of clustering algorithms for colour image segmentation

    Get PDF
    This paper details the implementation of three traditional clustering techniques (K-Means clustering, Fuzzy C-Means clustering and Adaptive K-Means clustering) that are applied to extract the colour information that is used in the image segmentation process. The aim of this paper is to evaluate the performance of the analysed colour clustering techniques for the extraction of optimal features from colour spaces and investigate which method returns the most consistent results when applied on a large suite of mosaic images

    Visual Human Tracking and Group Activity Analysis: A Video Mining System for Retail Marketing

    Get PDF
    Thesis (PhD) - Indiana University, Computer Sciences, 2007In this thesis we present a system for automatic human tracking and activity recognition from video sequences. The problem of automated analysis of visual information in order to derive descriptors of high level human activities has intrigued computer vision community for decades and is considered to be largely unsolved. A part of this interest is derived from the vast range of applications in which such a solution may be useful. We attempt to find efficient formulations of these tasks as applied to the extracting customer behavior information in a retail marketing context. Based on these formulations, we present a system that visually tracks customers in a retail store and performs a number of activity analysis tasks based on the output from the tracker. In tracking we introduce new techniques for pedestrian detection, initialization of the body model and a formulation of the temporal tracking as a global trans-dimensional optimization problem. Initial human detection is addressed by a novel method for head detection, which incorporates the knowledge of the camera projection model.The initialization of the human body model is addressed by newly developed shape and appearance descriptors. Temporal tracking of customer trajectories is performed by employing a human body tracking system designed as a Bayesian jump-diffusion filter. This approach demonstrates the ability to overcome model dimensionality ambiguities as people are leaving and entering the scene. Following the tracking, we developed a two-stage group activity formulation based upon the ideas from swarming research. For modeling purposes, all moving actors in the scene are viewed here as simplistic agents in the swarm. This allows to effectively define a set of inter-agent interactions, which combine to derive a distance metric used in further swarm clustering. This way, in the first stage the shoppers that belong to the same group are identified by deterministically clustering bodies to detect short term events and in the second stage events are post-processed to form clusters of group activities with fuzzy memberships. Quantitative analysis of the tracking subsystem shows an improvement over the state of the art methods, if used under similar conditions. Finally, based on the output from the tracker, the activity recognition procedure achieves over 80% correct shopper group detection, as validated by the human generated ground truth results

    Boundary Extraction in Images Using Hierarchical Clustering-based Segmentation

    Get PDF
    Hierarchical organization is one of the main characteristics of human segmentation. A human subject segments a natural image by identifying physical objects and marking their boundaries up to a certain level of detail [1]. Hierarchical clustering based segmentation (HCS) process mimics this capability of the human vision. The HCS process automatically generates a hierarchy of segmented images. The hierarchy represents the continuous merging of similar, spatially adjacent or disjoint, regions as the allowable threshold value of dissimilarity between regions, for merging, is gradually increased. HCS process is unsupervised and is completely data driven. This ensures that the segmentation process can be applied to any image, without any prior information about the image data and without any need for prior training of the segmentation process with the relevant image data. The implementation details of HCS process have been described elsewhere in the author's work [2]. The purpose of the current study is to demonstrate the performance of the HCS process in outlining boundaries in images and its possible application in processing medical images. [1] P. Arbelaez. Boundary Extraction in Natural Images Using Ultrametric Contour Maps. Proceedings 5th IEEE Workshop on Perceptual Organization in Computer Vision (POCV'06). June 2006. New York, USA. [2] A. N. Selvan. Highlighting Dissimilarity in Medical Images Using Hierarchical Clustering Based Segmentation (HCS). M. Phil. dissertation, Faculty of Arts Computing Engineering and Sciences Sheffield Hallam Univ., Sheffield, UK, 2007.</p

    Using Dimensionality Reduction and Clustering Techniques to Classify Space Plasma Regimes

    Get PDF
    Collisionless space plasma environments are typically characterized by distinct particle populations. Although moments of their velocity distribution functions help in distinguishing different plasma regimes, the distribution functions themselves provide more comprehensive information about the plasma state, especially at times when the distribution function includes non-thermal effects. Unlike moments, however, distribution functions are not easily characterized by a small number of parameters, making their classification more difficult to achieve. In order to perform this classification, we propose to distinguish between the different plasma regions by applying dimensionality reduction and clustering methods to electron distributions in pitch angle and energy space. We utilize four separate algorithms to achieve our plasma classifications: autoencoders, principal component analysis, mean shift, and agglomerative clustering. We test our classification algorithms by applying our scheme to data from the Cluster-Plasma Electron and Current Experiment instrument measured in the Earth’s magnetotail. Traditionally, it is thought that the Earth’s magnetotail is split into three different regions (the plasma sheet, the plasma sheet boundary layer, and the lobes), that are primarily defined by their plasma characteristics. Starting with the ECLAT database with associated classifications based on the plasma parameters, we identify eight distinct groups of distributions, that are dependent upon significantly more complex plasma and field dynamics. By comparing the average distributions as well as the plasma and magnetic field parameters for each region, we relate several of the groups to different plasma sheet populations, and the rest we attribute to the plasma sheet boundary layer and the lobes. We find clear distinctions between each of our classified regions and the ECLAT results. The automated classification of different regions in space plasma environments provides a useful tool to identify the physical processes governing particle populations in near-Earth space. These tools are model independent, providing reproducible results without requiring the placement of arbitrary thresholds, limits or expert judgment. Similar methods could be used onboard spacecraft to reduce the dimensionality of distributions in order to optimize data collection and downlink resources in future missions

    Analysing and Modelling Particle Distributions in Near-Earth Space: Machine Learning

    Get PDF
    This thesis contains the analysis of 10 years of ESA Cluster observations using machine learning techniques. In the first study, we investigate solar wind electron populations at 1 au. In the second study, we apply a novel machine learning technique to magnetotail data in order to better characterise particle distribution function. In the third study, we make the first in-situ observations of the tearing instability leading to magnetic reconnection in the magnetotail. Solar wind electron velocity distributions at 1 au consist of three main populations: the thermal `core' population and two suprathermal populations called halo and strahl. We apply unsupervised algorithms to phase space density distributions, to perform a statistical study of how the core/halo and core/strahl breakpoint energies vary. The results of our statistical study show a significant decrease in both breakpoint energies against solar wind speed. By fitting Maxwellians to the core, based on our study, we can discuss the relative importance of the core temperature on halo and strahl electrons. Collisionless space plasma environments are characterised by distinct particle populations that typically do not mix. Although moments of their velocity distributions help in distinguishing different plasma regimes, the distribution functions themselves provide more comprehensive information about the plasma state. By applying dimensionality reduction and clustering methods to electron distributions in pitch angle and energy space, we distinguish between the different plasma regions. We identify several new distinct groups of distributions, that are dependent upon significantly more complex plasma and field dynamics. Magnetic reconnection is a fundamental mechanism responsible for explosive energy release in space and laboratory plasmas. The onset of reconnection is via the tearing instability. Due to its elusive nature, there is an absence of in-situ observations of the tearing instability. We present the first direct observations of the tearing instability and the subsequent evolution of plasma electrons and reconnection, using neural network outlier detection methods. Our analysis of the tearing instability and subsequent reconnection provides new insights into the fundamental understanding of the mechanism responsible for reconnection

    Geometric Structure Extraction and Reconstruction

    Get PDF
    Geometric structure extraction and reconstruction is a long-standing problem in research communities including computer graphics, computer vision, and machine learning. Within different communities, it can be interpreted as different subproblems such as skeleton extraction from the point cloud, surface reconstruction from multi-view images, or manifold learning from high dimensional data. All these subproblems are building blocks of many modern applications, such as scene reconstruction for AR/VR, object recognition for robotic vision and structural analysis for big data. Despite its importance, the extraction and reconstruction of a geometric structure from real-world data are ill-posed, where the main challenges lie in the incompleteness, noise, and inconsistency of the raw input data. To address these challenges, three studies are conducted in this thesis: i) a new point set representation for shape completion, ii) a structure-aware data consolidation method, and iii) a data-driven deep learning technique for multi-view consistency. In addition to theoretical contributions, the algorithms we proposed significantly improve the performance of several state-of-the-art geometric structure extraction and reconstruction approaches, validated by extensive experimental results

    Unsupervised segmentation of natural images based on the adaptive integration of colour-texture descriptors

    Get PDF
    corecore