704 research outputs found

    Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research

    Get PDF
    This paper presents the results of an activity by the Large Eddy Simulation (LES) Working Group of the AIAA Fluid Dynamics Technical Committee to (1) address the current capabilities of LES, (2) outline recommended practices and key considerations for using LES, and (3) identify future research needs to advance the capabilities and reliability of LES for analysis of turbulent flows. To address the current capabilities and future needs, a survey comprised of eleven questions was posed to LES Working Group members to assemble a broad range of perspectives on important topics related to LES. The responses to these survey questions are summarized with the intent not to be a comprehensive dictate on LES, but rather the perspective of one group on some important issues. A list of recommended practices is also provided, which does not treat all aspects of a LES, but provides guidance on some of the key areas that should be considered

    Multiple-fluid SPH simulation using a mixture model

    Get PDF
    This article presents a versatile and robust SPH simulation approach for multiple-fluid flows. The spatial distribution of different phases or components is modeled using the volume fraction representation, the dynamics of multiple-fluid flows is captured by using an improved mixture model, and a stable and accurate SPH formulation is rigorously derived to resolve the complex transport and transformation processes encountered in multiple-fluid flows. The new approach can capture a wide range of real-world multiple-fluid phenomena, including mixing/unmixing of miscible and immiscible fluids, diffusion effect and chemical reaction, etc. Moreover, the new multiple-fluid SPH scheme can be readily integrated into existing state-of-the-art SPH simulators, and the multiple-fluid simulation is easy to set up. Various examples are presented to demonstrate the effectiveness of our approach

    Progress in particle-based multiscale and hybrid methods for flow applications

    Get PDF
    This work focuses on the review of particle-based multiscale and hybrid methods that have surfaced in the field of fluid mechanics over the last 20 years. We consider five established particle methods: molecular dynamics, direct simulation Monte Carlo, lattice Boltzmann method, dissipative particle dynamics and smoothed-particle hydrodynamics. A general description is given on each particle method in conjunction with multiscale and hybrid applications. An analysis on the length scale separation revealed that current multiscale methods only bridge across scales which are of the order of O(102)−O(103) and that further work on complex geometries and parallel code optimisation is needed to increase the separation. Similarities between methods are highlighted and combinations discussed. Advantages, disadvantages and applications of each particle method have been tabulated as a reference

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Energy based dissolution simulation using smoothed particle hydrodynamic sampling

    Get PDF
    Fluid simulation plays an important role in Computer Graphics and has wide applications in film and games. The desire for an improved physically-based fluid simulation solver has grown hand in hand with the advances made in Computer Graphics. Interesting fluid behaviours emerge when solid objects are added to a simulation: when fluid and solid make contact, they do not only have a physical interaction (e.g., buoyancy), but also a chemical reaction (e.g., dissolution) under the right conditions. Dissolution is one of the most common natural phenomena which is an important visual effect in fluid simulation. However this phe- nomenon is difficult to simulate due to the complexity of the behaviour and there are only few techniques available. A novel unified particle-based method for approximating chemical dis- solution is introduced in this thesis which is fast, predictable and visually plausible. The dissolution algorithm is derived using chemical Collision Theory and integrated into a Smoothed Particle Hydrodynamics (SPH) framework. The Collision Theory of chemistry is used as an analogy to the dissolution process modelling. Dissolution occurs when solute submerges into solvent. Physical laws govern the local excitation of so- lute particles based on the relative motion with solvent particles. When the local excitation energy exceeds a user specified threshold (activation energy), the particle will be dislodged from the solid. Unlike previous methods, this dissolution model ensures that the dissolution result is in- dependent of solute sampling resolution. A mathematical relationship is also established between the activation energy, the interfacial surface area, and the total dissolution time — allowing for intuitive artistic con- trol over the global dissolution rate. Applications of this method are demonstrated using a number of practical examples, including antacid pills dissolving in water and hydraulic erosion of non-homogeneous ter- rains. Both solutes and solvents are represented by particles, and the dis- tribution of the solute particles greatly affects the plausibility of the dissolution simulation. An even but stochastic distribution of particles on both the surface and within the volume of the solute is essential for a good visual simulation of the dynamic process of dissolution. A new iterative particle-based sampling method derived from SPH is introduced in this thesis which can generate a range of blue noise pat- terns and is computationally efficient, controllable and has a variety of applications. This approach resolves many of the limitations of classic blue noise methods, such as the lack of controllability or varying the dis- tribution properties of the generated samples. Fast sampling is achieved in general dimensions for curves, surfaces and volumes. By varying a sin- gle parameter, the proposed method can generate a range of controllable blue noise samples with different distribution properties which are suit- able for various applications such as adaptive sampling and multi-class sampling. The SPH sampling approach is used for solute particle distribution which guarantees a predictable and smooth dissolution process thanks to the evenly distributed density and also gives the user control of the volume change during the phase transition. The proposed SPH sampling method achieves better visual effects compared with simple grid sampling and other blue noise sampling methods. Our energy based dissolution simulation with SPH sampled solute and solvent ensures that the dissolution behaviour is physically and chemi- cally plausible, while supporting features such as object separation and sharp feature rounding. The simulation is parallelized per particle on a GPU to enhance the performance

    Large eddy simulation of turbulent swirling flames

    Get PDF
    Large eddy simulation (LES) is attractive as it provides a reasonable compromise between accuracy and cost, and is rapidly evolving as a practical approach for many engineering applications. This thesis is concerned with the application of large eddy simulation to unconfined swirl in turbulent non-premixed flames and isothermal flows. The LES methodology has been applied for the prediction of turbulent swirling reacting and non-reacting flows based on laboratory scale swirl burner known as the Sydney swirl burner, which has been a target flame of the workshop series of turbulent non-premixed flames (TNF). For that purpose a LES code was developed that can run wide range of applications. An algorithm was developed for LES of variable density reacting flow calculations. Particular attention was given to primitive conservation (mass, momentum and scalar) and kinetic energy of the flow and mixing field. The algorithm uses the primitive variables, which are staggered in both space and time. A steady laminar flamelet model which includes the detailed chemical kinetics and multi component mass diffusion, has been implemented in the LES code. An artificial inlet boundary condition method was implemented to generate instantaneous turbulent velocity fields that are imposed on the inflow boundary of the Cartesian grid. To improve the applicability of the code, various approaches were developed to improve stability and efficiency. LES calculations for isothermal turbulent swirling jets were successful in predicting experimentally measured mean velocities, their rms fluctuations and Reynolds shear stresses. The phenomenon of vortex breakdown (VB) and recirculation flow structures at different swirl and Reynolds numbers were successfully reproduced by the present large eddy simulations indicating that LES is capable of predicting VB phenomena which occurs only at certain conditions. For swirling flames, the LES predictions were able to capture the unsteady flow field, flame dynamics and showed good agreement with experimental measurements. The LES predictions for the mean temperature and major species were also successful

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 38)

    Get PDF
    Abstracts are provided for 132 patents and patent applications entered into the NASA scientific and technical information system during the period July 1990 through December 1990. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application
    corecore