1,252 research outputs found

    N-ary implicit blends with topology control

    Get PDF
    International audienceConstructive implicit surfaces are attractive for modeling and animation because they seamlessly handle shapes with complex and dynamic topology. However, the way they merge shapes is difficult to control. This paper introduces a solution: an improved blend operator that provides control over how topology changes are handled. It is based on a correction applied to the standard blending operator: the sum. Building on summation preserves the n-ary nature of the blend, providing the simplicity of arbitrary (e.g. flat) construction trees and segmentation invariance. The correction is based on projection to a reference case in the variation-space defined by the field and the norm of its gradient. It provides a single parameter, allowing for tuning behavior to achieve effects ranging from avoiding topological combination, through merging only during overlap, to merging at a distance. Dynamic adjustment of the parameter allows for context-dependent effects. Applications range from skeleton-based modeling, where shapes keep the topology of their skeleton, to objects that change topology during animation, with controllable merging. We illustrate the latter with Manga-style hair, where merging depends on the angle between hair wisps

    Animating Shapes at Arbitrary Resolution with Non-Uniform Stiffness

    Get PDF
    International audienceWe present a new method for physically animating deformable shapes using finite element models (FEM). Contrary to commonly used methods based on tetrahedra, our finite elements are the bounding voxels of a given shape at arbitrary resolution. This alleviates the complexities and limitations of tetrahedral volume meshing and results in regular, well-conditionned meshes. We show how to build the voxels and how to set the masses and stiffnesses in order to model the physical properties as accurately as possible at any given resolution. Additionally, we extend a fast and robust tetrahedron-FEM approach to the case of hexahedral elements. This permits simulation of arbitrarily complex shapes at interactive rates in a manner that takes into account the distribution of material within the elements

    The application of three-dimensional mass-spring structures in the real-time simulation of sheet materials for computer generated imagery

    Get PDF
    Despite the resources devoted to computer graphics technology over the last 40 years, there is still a need to increase the realism with which flexible materials are simulated. However, to date reported methods are restricted in their application by their use of two-dimensional structures and implicit integration methods that lend themselves to modelling cloth-like sheets but not stiffer, thicker materials in which bending moments play a significant role. This thesis presents a real-time, computationally efficient environment for simulations of sheet materials. The approach described differs from other techniques principally through its novel use of multilayer sheet structures. In addition to more accurately modelling bending moment effects, it also allows the effects of increased temperature within the environment to be simulated. Limitations of this approach include the increased difficulties of calibrating a realistic and stable simulation compared to implicit based methods. A series of experiments are conducted to establish the effectiveness of the technique, evaluating the suitability of different integration methods, sheet structures, and simulation parameters, before conducting a Human Computer Interaction (HCI) based evaluation to establish the effectiveness with which the technique can produce credible simulations. These results are also compared against a system that utilises an established method for sheet simulation and a hybrid solution that combines the use of 3D (i.e. multilayer) lattice structures with the recognised sheet simulation approach. The results suggest that the use of a three-dimensional structure does provide a level of enhanced realism when simulating stiff laminar materials although the best overall results were achieved through the use of the hybrid model

    Association Mouvement/Géométrie pour représentations volumiques

    Get PDF
    Session: AnimationNational audienceLes modĂšles particulaires permettent de produire des animations riches et variĂ©es. Ils sont particuliĂšrement adaptĂ©s Ă  certains effets d'animation. Mais intrinsĂšquement, ils ne sont pas basĂ©s sur des reprĂ©sentations surfaciques ou volumiques d'objets. Ainsi, visualiser le mouvement qu'ils dĂ©crivent peut poser problĂšme car ils ne contiennent souvent pas assez d'information pour reconstruire la moindre topologie spatiale sous-jacente. Plus prĂ©cisĂ©ment, un mouvement produit par de tels modĂšles peut ĂȘtre rendu via diffĂ©rentes formes gĂ©omĂ©triques et mener Ă  autant d'interprĂ©tations visuelles, sans contrĂŽle de l'utilisateur. À notre connaissance, il n'existe pas de mĂ©thode gĂ©nĂ©rique associant des mouvements basĂ©s points, comme ceux produits par un modĂšle particulaire, ou n'importe quel ensemble de points en mouvement, Ă  une structure topologique. Dans cet article, nous proposons un "framework" permettant d'associer, selon les souhaits de l'utilisateur, n'importe quelle forme volumique Ă  n'importe quel mouvement basĂ© points, et de contrĂŽler les changements topologiques. Il est ainsi possible de crĂ©er diffĂ©rents rĂ©sultats visuels avec une unique description de mouvement. Ce "framework" est sĂ©parĂ© en trois processus distincts : l'association entre particules et sommets, la dĂ©finition de l'application du mouvement aux sommets du maillage, et les modifications topologiques et les Ă©vĂ©nements qui les dĂ©clenchent. Nous montrons comment la manipulation de ces paramĂštres permet d'expĂ©rimenter diffĂ©rentes associations sur un mĂȘme mouvement

    Articulated Soft Objects for Multi-View Shape and Motion Capture

    Get PDF

    Planning Framework for Robotic Pizza Dough Stretching with a Rolling Pin

    Get PDF
    Stretching a pizza dough with a rolling pin is a nonprehensile manipulation. Since the object is deformable, force closure cannot be established, and the manipulation is carried out in a nonprehensile way. The framework of this pizza dough stretching application that is explained in this chapter consists of four sub-procedures: (i) recognition of the pizza dough on a plate, (ii) planning the necessary steps to shape the pizza dough to the desired form, (iii) path generation for a rolling pin to execute the output of the pizza dough planner, and (iv) inverse kinematics for the bi-manual robot to grasp and control the rolling pin properly. Using the deformable object model described in Chap. 3, each sub-procedure of the proposed framework is explained sequentially

    Meshless animation of fracturing solids

    Get PDF
    We present a new meshless animation framework for elastic and plastic materials that fracture. Central to our method is a highly dynamic surface and volume sampling method that supports arbitrary crack initiation, propagation, and termination, while avoiding many of the stability problems of traditional mesh-based techniques. We explicitly model advancing crack fronts and associated fracture surfaces embedded in the simulation volume. When cutting through the material, crack fronts directly affect the coupling between simulation nodes, requiring a dynamic adaptation of the nodal shape functions. We show how local visibility tests and dynamic caching lead to an efficient implementation of these effects based on point collocation. Complex fracture patterns of interacting and branching cracks are handled using a small set of topological operations for splitting, merging, and terminating crack fronts. This allows continuous propagation of cracks with highly detailed fracture surfaces, independent of the spatial resolution of the simulation nodes, and provides effective mechanisms for controlling fracture paths. We demonstrate our method for a wide range of materials, from stiff elastic to highly plastic objects that exhibit brittle and/or ductile fracture. Copyright © 2005 by the Association for Computing Machinery, Inc

    Digital Alchemy: Matter and Metamorphosis in Contemporary Digital Animation and Interface Design

    Get PDF
    The recent proliferation of special effects in Hollywood film has ushered in an era of digital transformation. Among scholars, digital technology is hailed as a revolutionary moment in the history of communication and representation. Nevertheless, media scholars and cultural historians have difficulty finding a language adequate to theorizing digital artifacts because they are not just texts to be deciphered. Rather, digital media artifacts also invite critiques about the status of reality because they resurrect ancient problems of embodiment and transcendence.In contrast to scholarly approaches to digital technology, computer engineers, interface designers, and special effects producers have invented a robust set of terms and phrases to describe the practice of digital animation. In order to address this disconnect between producers of new media and scholars of new media, I argue that the process of digital animation borrows extensively from a set of preexisting terms describing materiality that were prominent for centuries prior to the scientific revolution. Specifically, digital animators and interface designers make use of the ancient science, art, and technological craft of alchemy. Both alchemy and digital animation share several fundamental elements: both boast the power of being able to transform one material, substance, or thing into a different material, substance, or thing. Both seek to transcend the body and materiality but in the process, find that this elusive goal (realism and gold) is forever receding onto the horizon.The introduction begins with a literature review of the field of digital media studies. It identifies a gap in the field concerning disparate arguments about new media technology. On the one hand, scholars argue that new technologies like cyberspace and digital technology enable radical new forms of engagement with media on individual, social, and economic levels. At the same time that media scholars assert that our current epoch is marked by a historical rupture, many other researchers claim that new media are increasingly characterized by ancient metaphysical problems like embodiment and transcendence. In subsequent chapters I investigate this disparity

    Painterly rendering techniques: A state-of-the-art review of current approaches

    Get PDF
    In this publication we will look at the different methods presented over the past few decades which attempt to recreate digital paintings. While previous surveys concentrate on the broader subject of non-photorealistic rendering, the focus of this paper is firmly placed on painterly rendering techniques. We compare different methods used to produce different output painting styles such as abstract, colour pencil, watercolour, oriental, oil and pastel. Whereas some methods demand a high level of interaction using a skilled artist, others require simple parameters provided by a user with little or no artistic experience. Many methods attempt to provide more automation with the use of varying forms of reference data. This reference data can range from still photographs, video, 3D polygonal meshes or even 3D point clouds. The techniques presented here endeavour to provide tools and styles that are not traditionally available to an artist. Copyright © 2012 John Wiley & Sons, Ltd
    • 

    corecore