8,738 research outputs found

    Hermeneutic resonance in animats and art

    Get PDF
    One major criticism of direct or active perception (and other forms of embodied action) from the perspective of cognitive psycology is that, according to common sense, there are some actions that require strictly symbolic information - for example, to stop a car in response to a red traffic light - which fall outside the realm of a perception-action cycle. Although such cognitive responses are not necessarily a goal of artificial life, they must necessarily be included within the embodied paradigm if it is to encompass the cognisant individual, the self-aware individual, or, potentially, the conscious individual. This paper will address the question, 'can an animat appreciate art?' Although this may seem very different to the example of a prosaic response to a traffic light, it will be argued that a common framework for establishing the meaning of an object is needed. It will also be argued that clarification to previous philosophical models of artistic engagement is required: in particular that the process of understanding is not a dialogue between an autopoietic artwork and animat, but that there is either a unity of object (artwork-animat) which becomes self-maintaining, or a more classical Gibsonian interpretation as a fixed set of affordances offered by an object to the subject, both of which lead to the conclusion that the process of understanding becomes a resonance in the unity or animat

    SOVEREIGN: An Autonomous Neural System for Incrementally Learning Planned Action Sequences to Navigate Towards a Rewarded Goal

    Full text link
    How do reactive and planned behaviors interact in real time? How are sequences of such behaviors released at appropriate times during autonomous navigation to realize valued goals? Controllers for both animals and mobile robots, or animats, need reactive mechanisms for exploration, and learned plans to reach goal objects once an environment becomes familiar. The SOVEREIGN (Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goaloriented Navigation) animat model embodies these capabilities, and is tested in a 3D virtual reality environment. SOVEREIGN includes several interacting subsystems which model complementary properties of cortical What and Where processing streams and which clarify similarities between mechanisms for navigation and arm movement control. As the animat explores an environment, visual inputs are processed by networks that are sensitive to visual form and motion in the What and Where streams, respectively. Position-invariant and sizeinvariant recognition categories are learned by real-time incremental learning in the What stream. Estimates of target position relative to the animat are computed in the Where stream, and can activate approach movements toward the target. Motion cues from animat locomotion can elicit head-orienting movements to bring a new target into view. Approach and orienting movements are alternately performed during animat navigation. Cumulative estimates of each movement are derived from interacting proprioceptive and visual cues. Movement sequences are stored within a motor working memory. Sequences of visual categories are stored in a sensory working memory. These working memories trigger learning of sensory and motor sequence categories, or plans, which together control planned movements. Predictively effective chunk combinations are selectively enhanced via reinforcement learning when the animat is rewarded. Selected planning chunks effect a gradual transition from variable reactive exploratory movements to efficient goal-oriented planned movement sequences. Volitional signals gate interactions between model subsystems and the release of overt behaviors. The model can control different motor sequences under different motivational states and learns more efficient sequences to rewarded goals as exploration proceeds.Riverside Reserach Institute; Defense Advanced Research Projects Agency (N00014-92-J-4015); Air Force Office of Scientific Research (F49620-92-J-0225); National Science Foundation (IRI 90-24877, SBE-0345378); Office of Naval Research (N00014-92-J-1309, N00014-91-J-4100, N00014-01-1-0624, N00014-01-1-0624); Pacific Sierra Research (PSR 91-6075-2

    The risks facing electronic banking operations and legal protection in Jordan : [abstract]

    Get PDF

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    Methodological Flaws in Cognitive Animat Research

    Get PDF
    In the field of convergence between research in autonomous machine construction and biological systems understanding it is usually argued that building robots for research on auton- omy by replicating extant animals is a valuable strategy for engineering autonomous intelligent systems. In this paper we will address the very issue of animat construction, the ratio- nale behind this, their current implementations and the value they are producing. It will be shown that current activity, as it is done today, is deeply flawed and useless as research in the science and engineering of autonomy

    The Evolution of Reaction-diffusion Controllers for Minimally Cognitive Agents

    Get PDF
    No description supplie

    A Comparison of Different Cognitive Paradigms Using Simple Animats in a Virtual Laboratory, with Implications to the Notion of Cognition

    Get PDF
    In this thesis I present a virtual laboratory which implements five different models for controlling animats: a rule-based system, a behaviour-based system, a concept-based system, a neural network, and a Braitenberg architecture. Through different experiments, I compare the performance of the models and conclude that there is no best model, since different models are better for different things in different contexts. The models I chose, although quite simple, represent different approaches for studying cognition. Using the results as an empirical philosophical aid, I note that there is no best approach for studying cognition, since different approaches have all advantages and disadvantages, because they study different aspects of cognition from different contexts. This has implications for current debates on proper approaches for cognition: all approaches are a bit proper, but none will be proper enough. I draw remarks on the notion of cognition abstracting from all the approaches used to study it, and propose a simple classification for different types of cognition

    The risks facing electronic banking operations and legal protection in Jordan

    Get PDF

    SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-Oriented Navigation System

    Full text link
    Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.Advanced Research Projects Agency (N00014-92-J-4015); Air Force Office of Scientific Research (F49620-92-J-0225, F49620-01-1-0397); National Science Foundation (IRI 90-24877, SBE-0354378); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-95-1-0657, N00014-01-1-0624); Pacific Sierra Research (PSR 91-6075-2
    corecore