26,164 research outputs found

    High resolution observations of low contrast phenomena from an Advanced Geosynchronous Platform (AGP)

    Get PDF
    Present technology allows radiometric monitoring of the Earth, ocean and atmosphere from a geosynchronous platform with good spatial, spectral and temporal resolution. The proposed system could provide a capability for multispectral remote sensing with a 50 m nadir spatial resolution in the visible bands, 250 m in the 4 micron band and 1 km in the 11 micron thermal infrared band. The diffraction limited telescope has a 1 m aperture, a 10 m focal length (with a shorter focal length in the infrared) and linear and area arrays of detectors. The diffraction limited resolution applies to scenes of any brightness but for a dark low contrast scenes, the good signal to noise ratio of the system contribute to the observation capability. The capabilities of the AGP system are assessed for quantitative observations of ocean scenes. Instrument and ground system configuration are presented and projected sensor capabilities are analyzed

    SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization

    Get PDF
    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass's hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field

    Diffractive optics approach towards subwavelength pixels

    Full text link
    Pixel size in cameras and other refractive imaging devices is typically limited by the free-space diffraction. However, a vast majority of semiconductor-based detectors are based on materials with substantially high refractive index. We demonstrate that diffractive optics can be used to take advantage of this high refractive index to reduce effective pixel size of the sensors below free-space diffraction limit. At the same time, diffractive systems encode both amplitude and phase information about the incoming beam into multiple pixels, offering the platform for noise-tolerant imaging with dynamical refocusing. We explore the opportunities opened by high index diffractive optics to reduce sensor size and increase signal-to-noise ratio of imaging structures.Comment: submitted to SPIE-DCS 201

    Angular resolution limit for deterministic correlated sources

    Full text link
    This paper is devoted to the analysis of the angular resolution limit (ARL), an important performance measure in the directions-of-arrival estimation theory. The main fruit of our endeavor takes the form of an explicit, analytical expression of this resolution limit, w.r.t. the angular parameters of interest between two closely spaced point sources in the far-field region. As by-products, closed-form expressions of the Cram\'er-Rao bound have been derived. Finally, with the aid of numerical tools, we confirm the validity of our derivation and provide a detailed discussion on several enlightening properties of the ARL revealed by our expression, with an emphasis on the impact of the signal correlation

    Angular Resolution Limit for Vector-Sensor Arrays: Detection and Information Theory Approaches

    No full text
    International audienceThe Angular Resolution Limit (ARL) on resolving two closely spaced polarized sources using vector-sensor arrays is considered in this paper. The proposed method is based on the information theory. In particular, the Stein's lemma provides, asymptotically, a link between the probability of false alarm and the relative entropy between two hypothesis of a given statistical binary test. We show that the relative entropy can be approximated by a quadratic function in the ARL. This property allows us to derive and analyze a closed-form expression of the ARL. To illustrate the interest of our approach the ARL, in the sense of the detection theory, is also derived. Finally, we show that the ARL is only sensitive to the norm of the polarization state vector and not to the particular values of the polarization parameters

    CASTER - a concept for a Black Hole Finder Probe based on the use of new scintillator technologies

    Get PDF
    The primary scientific mission of the Black Hole Finder Probe (BHFP), part of the NASA Beyond Einstein program, is to survey the local Universe for black holes over a wide range of mass and accretion rate. One approach to such a survey is a hard X-ray coded-aperture imaging mission operating in the 10--600 keV energy band, a spectral range that is considered to be especially useful in the detection of black hole sources. The development of new inorganic scintillator materials provides improved performance (for example, with regards to energy resolution and timing) that is well suited to the BHFP science requirements. Detection planes formed with these materials coupled with a new generation of readout devices represent a major advancement in the performance capabilities of scintillator-based gamma cameras. Here, we discuss the Coded Aperture Survey Telescope for Energetic Radiation (CASTER), a concept that represents a BHFP based on the use of the latest scintillator technology.Comment: 12 pages; conference paper presented at the SPIE conference "UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XIV." To be published in SPIE Conference Proceedings, vol. 589

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201
    • …
    corecore