2,822 research outputs found

    Orbiter-orbiter and orbiter-lander tracking using same-beam interferometry

    Get PDF
    Two spacecraft orbiting Mars will subtend a small angle as viewed from Earth. This angle will usually be smaller than the beam width of a single radio antenna. Thus the two spacecraft may be tracked simultaneously by a single Earth-based antenna. The same-beam interferometry (SBI) technique involves using two widely separated antennas, each observing the two spacecraft, to produce a measurement of the angular separation of the two spacecraft in the plane of the sky. The information content of SBI data is thus complementary to the line-of-sight information provided by conventional Doppler data. The inclusion of SBI data with the Doppler data in a joint orbit estimation procedure can desensitize the solution to gravity mismodeling and result in improved orbit determination accuracy. This article presents an overview of the SBI technique, a measurement error analysis, and an error covariance analysis of some examples of the application of SBI to orbit determination. For hypothetical scenarios involving the Mars Observer and the Russian Mars '94 spacecraft, orbit determination accuracy improvements of up to an order of magnitude are predicted, relative to the accuracy that can be obtained by using only Doppler data acquired separately from each spacecraft. Relative tracking between a Mars orbiter and a lander fixed on the surface of Mars is also studied. Results indicate that the lander location may be determined to a few meters, while the orbiter ephemeris may be determined with accuracy similar to the orbiter-orbiter case

    The goldstone real-time connected element interferometer

    Get PDF
    Connected element interferometry (CEI) is a technique of observing a celestial radio source at two spatially separated antennas and then interfering the received signals to extract the relative phase of the signal at the two antennas. The high precision of the resulting phase delay data type can provide an accurate determination of the angular position of the radio source relative to the baseline vector between the two stations. This article describes a recently developed connected element interferometer on a 21-km baseline between two antennas at the Deep Space Network's Goldstone, California, tracking complex. Fiber-optic links are used to transmit the data to a common site for processing. The system incorporates a real-time correlator to process these data in real time. The architecture of the system is described, and observational data are presented to characterize the potential performance of such a system. The real-time processing capability offers potential advantages in terms of increased reliability and improved delivery of navigational data for time-critical operations. Angular accuracies of 50-100 nrad are achievable on this baseline

    Deep space tracking in local reference frames

    Get PDF
    A self-calibrating deep space tracking technique is described which can potentially produce two nanoradian angular spacecraft determinations. The technique uses very long base interferometric observations of a spacecraft and several radio sources. The currently employed single source technique is described as a parameter estimation procedure. Then, the number of parameters and observations leads to the proposed local reference frame technique. Station clock, Earth rotation, and tropospheric parameters are estimated along with spacecraft position from the multisource observation sequence. The contributions to spacecraft angular uncertainty from system noise, tropospheric fluctuations, and uncalibrated radio source structure are evaluated. Of these experimental errors, radio source structure dominates the determination of the spacecraft position in the radio reference frame. It is shown, however, that the sensitivity of relative spacecraft position accuracies to time-invariant radio source structure effects may be on the order of 2 nanoradians

    Position determination of a lander and rover at Mars with Earth-based differential tracking

    Get PDF
    The presence of two or more landed or orbiting spacecraft at a planet provides the opportunity to perform extremely accurate Earth-based navigation by simultaneously acquiring Doppler data and either Same-Beam Interferometry (SBI) or ranging data. Covariance analyses were performed to investigate the accuracy with which lander and rover positions on the surface of Mars can be determined. Simultaneous acquisition of Doppler and ranging data from a lander and rover over two or more days enables determination of all components of their relative position to under 20 m. Acquiring one hour of Doppler and SBI enables three dimensional lander-rover relative position determination to better than 5 m. Twelve hours of Doppler and either SBI or ranging from a lander and a low circular or half synchronous circular Mars orbiter makes possible lander absolute position determination to tens of meters

    A nanoradian differential VLBI tracking demonstration

    Get PDF
    The shift due to Jovian gravitational deflection in the apparent angular position of the radio source P 0201+113 was measured with very long baseline interferometry (VLBI) to demonstrate a differential angular tracking technique with nanoradian accuracy. The raypath of the radio source P 0201+113 passed within 1 mrad of Jupiter (approximately 10 Jovian radii) on 21 Mar. 1988. Its angular position was measured 10 times over 4 hours on that date, with a similar measurement set on 2 Apr. 1988, to track the differential angular gravitational deflection of the raypath. According to general relativity, the expected gravitational bend of the raypath averaged over the duration of the March experiment was approximately 1.45 nrad projected onto the two California-Australia baselines over which it was measured. Measurement accuracies on the order of 0.78 nrad were obtained for each of the ten differential measurements. The chi(exp 2) per degree of freedom of the data for the hypothesis of general relativity was 0.6, which suggests that the modeled dominant errors due to system noise and tropospheric fluctuations fully accounted for the scatter in the measured angular deflections. The chi(exp 2) per degree of freedom for the hypothesis of no gravitational deflection by Jupiter was 4.1, which rejects the no-deflection hypothesis with greater than 99.999 percent confidence. The system noise contributed about 0.34 nrad per combined-baseline differential measurement and tropospheric fluctuations contributed about 0.70 nrad. Unmodeled errors were assessed, which could potentially increase the 0.78 nrad error by about 8 percent. The above chi(exp 2) values, which result from the full accounting of errors, suggest that the nanoradian gravitational deflection signature was successfully tracked

    Experimental Design for the LATOR Mission

    Full text link
    This paper discusses experimental design for the Laser Astrometric Test Of Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy of 1 part in 10^8 in measuring the curvature of the solar gravitational field as given by the value of the key Eddington post-Newtonian parameter \gamma. This mission will demonstrate the accuracy needed to measure effects of the next post-Newtonian order (~G^2) of light deflection resulting from gravity's intrinsic non-linearity. LATOR will provide the first precise measurement of the solar quadrupole moment parameter, J2, and will improve determination of a variety of relativistic effects including Lense-Thirring precession. The mission will benefit from the recent progress in the optical communication technologies -- the immediate and natural step above the standard radio-metric techniques. The key element of LATOR is a geometric redundancy provided by the laser ranging and long-baseline optical interferometry. We discuss the mission and optical designs, as well as the expected performance of this proposed mission. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.Comment: 16 pages, 17 figures, invited talk given at ``The 2004 NASA/JPL Workshop on Physics for Planetary Exploration.'' April 20-22, 2004, Solvang, C

    Goldstone intracomplex connected element interferometry

    Get PDF
    Interferometric observations of the radio source pair 3C 84 and OE 400 were made on the 21 km baseline between Deep Space Station (DSS) 13 and DSS 15 to explore the angular navigation potential of intracomplex connected element interferometry (CEI). The differential phase-delay observable formed from pairs of 3 minute scans exhibited a precision of 1 psec, while the actual scatter of the phase-delay residuals for eleven scans over the 90 minute observing session was about 10 psec, consistent with the expected few millimeter fluctuations in the wet tropospheric path delay. Fitting for the position of OE 400 relative to 3C 84 yielded an error ellipse with a semi-minor axis of 60 nrad. Given the short data arc in this experiment, the orthogonal direction in the plane of the sky is not well determined; however, a second baseline or a data arc spanning a larger fraction of the source mutual visibility window could provide simultaneous determination of both right ascension and declination. Examination of the phase-delay residuals supports the accuracy of the cycle ambiguity resolution. However, reliable phase ambiguity resolution will pose the most significant challenge to routine use of CEI for spacecraft tracking, particularly when the a priori spacecraft source position is not well known. Several approaches for ambiguity resolution are briefly outlined

    An accuracy assessment of Magellan Very Long Baseline Interferometry (VLBI)

    Get PDF
    Very Long Baseline Interferometry (VLBI) measurements of the Magellan spacecraft's angular position and velocity were made during July through September, 1989, during the spacecraft's heliocentric flight to Venus. The purpose of this data acquisition and reduction was to verify this data type for operational use before Magellan is inserted into Venus orbit, in August, 1990. The accuracy of these measurements are shown to be within 20 nanoradians in angular position, and within 5 picoradians/sec in angular velocity. The media effects and their calibrations are quantified; the wet fluctuating troposphere is the dominant source of measurement error for angular velocity. The charged particle effect is completely calibrated with S- and X-Band dual-frequency calibrations. Increasing the accuracy of the Earth platform model parameters, by using VLBI-derived tracking station locations consistent with the planetary ephemeris frame, and by including high frequency Earth tidal terms in the Earth rotation model, add a few nanoradians improvement to the angular position measurements. Angular velocity measurements were insensitive to these Earth platform modelling improvements
    corecore